
RESEARCH ARTICLE

Anthropogenic CO2 emissions from a megacity in the Yangtze River
Delta of China

Cheng Hu1,2,3
& Shoudong Liu1,2

& Yongwei Wang1,2
& Mi Zhang1,2

& Wei Xiao1,2
& Wei Wang1,2

& Jiaping Xu1,4

Received: 3 January 2018 /Accepted: 15 May 2018 /Published online: 3 June 2018
# Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Anthropogenic CO2 emissions from cities represent a major source contributing to the global atmospheric CO2 burden. Here, we
examined the enhancement of atmospheric CO2 mixing ratios by anthropogenic emissions within the Yangtze River Delta
(YRD), China, one of the world’s most densely populated regions (population greater than 150 million). Tower measurements
of CO2 mixing ratios were conducted from March 2013 to August 2015 and were combined with numerical source footprint
modeling to help constrain the anthropogenic CO2 emissions. We simulated the CO2 enhancements (i.e., fluctuations
superimposed on background values) for winter season (December, January, and February). Overall, we observed mean diurnal
variation of CO2 enhancement of 23.5~49.7 μmol mol−1, 21.4~52.4 μmol mol−1, 28.1~55.4 μmol mol−1, and
29.5~42.4 μmol mol−1 in spring, summer, autumn, and winter, respectively. These enhancements were much larger than
previously reported values for other countries. The diurnal CO2 enhancements reported here showed strong similarity for all
3 years of the study. Results from source footprint modeling indicated that our tower observations adequately represent emissions
from the broader YRD area. Here, the east of Anhui and the west of Jiangsu province contributed significantly more to the
anthropogenic CO2 enhancement compared to the other sectors of YRD. The average anthropogenic CO2 emission in 2014 was
0.162 (± 0.005) mg m−2 s−1 and was 7 ± 3% higher than 2010 for the YRD. Overall, our emission estimates were significantly
smaller (9.5%) than those estimated (0.179 mg m−2 s−1) from the EDGAR emission database.
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Introduction

Anthropogenic carbon dioxide (CO2) emissions play an im-
portant role in the global carbon budget and the greenhouse
gas radiative budget (Mckain et al. 2012). Regions with high
population and industry density are hotspots for CO2 emis-
sions. Interestingly, cities account for 70% of the total anthro-
pogenic emissions, but account for only 2% of the global land
surface (Satterthwaite 2008; Canadell et al. 2010). Emissions
from urban ecosystems are directly related to fuel consump-
tion from electricity generation, industry, and transportation.
Reports from the United Nations predict that the population
living in cities will increase from 3.4 billion to 6.3 billion by
the year 2050 (Rosenzweig et al. 2010). This increase imposes
a potentially large burden on policy makers to help control
CO2 emissions and to develop mitigation strategies. There is
an important need therefore to better quantify anthropogenic
CO2 emissions from major urban areas and to improve our
understanding of the patterns and controls on CO2 emissions
(Xu et al. 2017; Sun et al. 2017). Here, we examine CO2
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emissions from the Yangtze River Delta of China where the
total population is approximately 150 million.

Both Btop-down^ and Bbottom-up^ methods have been
applied in quantifying urban CO2 emissions. Bottom-up
methods such as the IPCC (Inter-governmental Panel on
Climate Change) inventory method use activity data and emis-
sion factors to calculate emissions from each category and
section to determine the total CO2 budget at the local to re-
gional scale (IPCC 2013). The default emission factors for
different fossil fuel categories have been established and ap-
plied globally. However, relatively large biases still exist for a
number of source categories. For example for the same fossil
fuel type, the emission factors can vary widely depending on
country or even region within the same country (Rypdal and
Winiwarter 2001; Zhao et al. 2012; Liu et al. 2015). Liu et al.
(2015) found that emission factors in China were much larger
than default values based on experiments conducted in coal-
mining regions. Such discrepancies in activity data and emis-
sion factors can lead to ~ 40% uncertainty at the country or
regional scale and as much as 150% at the local scale (Peylin
et al. 2013; Wang et al. 2013). Many anthropogenic CO2

emission maps are based on the IPCC method. To date, they
provide the most widely used anthropogenic CO2 information
and are often used for computing inventory statistics and used
in model simulations (Peters et al. 2007; Gurney et al. 2009;
European Commission 2009). These emission maps are treat-
ed as a priori data and need to be evaluated and tuned to
improve emission estimates worldwide.

Top-down methods have been used in recent years to re-
trieve CO2 emissions at regional scales via remote sensing,
atmospheric transport models, and atmospheric CO2 mixing
ratio observations (Mckain et al. 2012; Kort et al. 2012, 2013;
Staufer et al. 2016; Sun et al. 2017; Hu et al. 2018). This
method is based on the theory that the enhancement in atmo-
spheric concentrations relative to background values can be
used to track anthropogenic emissions over megacities (Kort
et al. 2013). For its strength in continuous temporal scale and
finer spatial scale, atmospheric transport models shown large
potential in CO2 flux retrievals.

Early inverse studies focused on estimating net ecosystem
CO2 fluxwith anthropogenic emission prescribed as true values
(Peters et al. 2007; Gurney et al. 2009; Ogle et al. 2015). Recent
studies have applied this inverse method for constraining an-
thropogenic emissions and have demonstrated reasonably good
performance. To date, this methodology has been applied to
Paris (Bréon et al. 2015; Staufer et al. 2016), Berlin (Pillai et
al. 2016), California’s Bay Area (Kort et al. 2013; Turner et al.
2016), Indianapolis (Turnbull et al. 2015), Salt Lake City
(Mckain et al. 2012), and Minneapolis-St.Paul, Minnesota
(Hu et al. 2018), while this method has not yet been applied
in China for anthropogenic CO2 retrieval, where urban areas are
extremely dense and the economy has rapidly developed. This
is especially true for the Yangtze River Delta, which represents

a megacity complex and a population of about 150 million.
Indeed, as a human-dominated landscape, the Yangtze River
Delta ranks as one of the densest urbanized regions of the world
and one of the most developed regions in China (Jiangsu,
Zhejiang, Anhui province, and Shanghai municipality). Its area
accounts for only 2.2% of China, yet represents 11% of the
national population. It accounts for about 18.5% of China’s
GDP in 2014. The Nanjing municipality is also the second-
largest city in YRD with a population of 8 million. Thus, the
YRD is a potential hot spot for anthropogenic CO2 emissions.
Based on IPCC statistics, anthropogenic CO2 emissions were
reported to be 66.49 (± 8%) × 109 kg in Nanjing and 15.35 (±
10%) × 1011 kg for YRD in 2009 (Shen et al. 2014). Xu et al.
(2017) used the IPCC methodology and estimated an increase
of anthropogenic CO2 emissions by about 70% since 2009 in
response to the rapid increase in GDP for this period. These
previous studies are based on Bbottom-up^methods and there is
an important need to use top-down approaches to help confirm
the magnitude of these emissions.

To constrain the anthropogenic CO2 emissions in YRD, we
have conducted atmospheric CO2 mixing ratio measurements
at a height of 34 m over a period of nearly 3 years. We com-
bined these observations with an atmospheric transport model
and a priori emission maps to simulate atmospheric CO2 en-
hancements and used this information to help constrain the
anthropogenic CO2 emissions. The objectives of this study
are to (1) establish the first long-term CO2 mixing ratio obser-
vations in the Yangtze River Delta and analyze its seasonal
variations based on WRF-STILT simulations; (2) evaluate if
the CO2 mixing ratio observations are representative of the
Yangtze River Delta; and (3) constrain the anthropogenic
emissions using a top-down methodology and compare this
estimate with the most recent bottom-up estimate from
EDGAR42 for the year 2014.

Materials and methodology

Research site

The atmospheric CO2 mixing ratios were measured on the
rooftop of the Meteorology building (34 m) located at the
Nanjing University of Information Science and Technology
(32o 12′ N, 118o 43′ E). This measurement site is located
25 km north of Nanjing municipality, China, (Fig. 1). The
Nanjing municipality is close to the center of YRD and ranks
as the second largest city (population of 8 million). The
Yangtze River encompasses Jiangsu, Zhejiang, Anhui prov-
ince, and Shanghai municipality (Fig. 1).

Our measurements were near continuous from March 2013
to August 2015. Air was measured at a flow rate of
30 mLmin−1 and recorded to a data logger at 0.3 Hz. To ensure
high accuracy of the CO2 measurements, the analyzer (model
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G1101-i, Picarro, Inc. Sunnyvale, CA) was calibrated every 3 h
with standards traceable to the National Oceanic and
Atmospheric Administration, Earth System Research
Laboratory (NOAA-ESRL). The precision of the hourly aver-
aged CO2mixing ratios was typically 0.1 μmol mol−1 (Xu et al.
2017).

CO2 a priori anthropogenic emissions

IPCC method applied activity data and emission factors to
estimate fossil fuel CO2 emissions; the emission factors are
derived from the synthesis of field observations and modeling.
As noted above, large uncertainty and bias can exist in both
emission factors and activity data and can propagate into the
derived CO2 emissions. The EDGAR (Emission Database for
Global Atmospheric Research, version 4.2, 2011, http://edgar.
jrc.ec.europa.eu) and VULCAN (Gurney et al. 2009) are two
popular products and based on the IPCC methodology. They
provided to date most excellent distribution at finer spatial
scale. For the reason that VULCAN owned hourly scaling
factors for each anthropogenic CO2 flux in all categories while
was only available to 2002, EDGAR provided annual mean
CO2 emission for the year of 2010; here, anthropogenic CO2

emissions from EDGAR and hourly scaling factors from
VULCAN will be applied in our study, and we will build
our constraint based on these available a priori product and
this method was descripted in greater details below.

EDGAR v4.2 provides 13 anthropogenic emission catego-
ries including residential, oil production (refineries) industry,
energy industry, road transportation, manufacturing industry
combustion, combustion in manufacturing industry, and other
anthropogenic categories (i.e., mineral process and solid waste
disposal). According to our preliminary analyses, the first 6
categories accounted for 85% of the total anthropogenic CO2

emissions in YRD. The energy industry, road transportation,
and residential and manufacturing industry categories
accounted for 43, 22.4, 12.9, and 8.6%, respectively. The lat-
est EDGAR v4.2 only provides emission maps up to the year

2010 and does not directly match our observational period
(2013 to 2015). To obtain an a priori emission map for our
study period, we assume the spatial distribution of emissions
for 2013 to 2015 is consistent with the year 2010 and we have
adjusted the total emissions for the study domain based on the
CO2 emissions in 2014 (107.11 Gtons) and 2010
(89.87 Gtons) for China (http://edgar.jrc.ec.europa.eu).
Therefore, a ratio of 1.18 (107.11/89.87) was applied in
order to estimate the emissions for our study period.
Anthropogenic emissions from residential, on-road transpor-
tation, and combustion in manufacturing industry are shown
in Fig. 2. The emission map shown excellent distribution of
anthropogenic CO2 information; two of the largest industrial
complexes Nanjing Iron & Steel Group and Chemical
Industry Group Co. Ltd. were in 5 km distance with our
observation site and were reflected by EDGAR emissions
with CO2 emissions from oil industry 4.4 × 10−5 and 7.3 ×
10−5 mol m−2 s−1 (energy industry 1.1 × 10−4 mol m−2 s−1)
at the same locations.

To simulate the diurnal variation of CO2 emissions, we
derived hourly scaling factors based on the VULCAN data-
base (Gurney et al. 2009) for industry, residential, and road
transportation (Hu et al. 2018). This approach accounts for the
diurnal variations of different human activities. For instance,
on-road transportation scaling factors exhibited 2 peaks with a
scaling factor of about 1.3 at 7:00 and 1.8 at 17:00. These
peaks represent increased transportation activity associated
with the typical work day. This scaling factor dropped to 0.2
during the evening hours after the work day had ended. The
scaling factors for industry were much smoother indicating
continuous production through the whole day. Further details
regarding this diurnal scaling approach can be found in Hu et
al. (2018).

Anthropogenic CO2 emissions should also exhibit seasonal
variations related to the interaction between human activities
and the influence of different weather conditions. Here, we
derived monthly scaling factors using Carbon Tracker statis-
tics (Peters et al. 2007). For winter (October, January, and

Fig. 1 Study domains forWRF3.5model, the area in red square is the domain for STILTmodel, total anthropogenic CO2 emissionmap inYangtze River
Delta is displayed on the right (unit mol m−2 s−1), with red dot denote our observation site location
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February), the scaling factors were adjusted higher to account
for greater residential heating (Table 1). Here, the scaling fac-
tors were larger than 1 from October to March. The approach
used here also accounts for regional differences associated
with climate. For instance, the Yangtze River Delta area
(domain1) has smaller monthly scaling factors than North
China (contained by domain3) because North China is much
colder than the Yangtze River Delta area. There is greater
need, therefore, for more coal and natural gas burning during
the heating season.

WRF-STILT model setup

Simulation of CO2 mixing ratios

Following previous studies (Ahmadov et al. 2009; Mallia et
al. 2015; Hu et al. 2018), the CO2 mixing ratio was simulated
as the sum of background (CO2, bg), enhancements contribut-
ed by local sources of combustion (ΔCO2, comb), and biolog-
ical CO2 flux (ΔCO2, NEE) as described in eq. (1). Local an-
thropogenic combustion source contributions were divided

into fossil fuel use (ΔCO2, ff) and biomass burning (ΔCO2,

bb) as described in eq. (2). Fossil fuel CO2 fluxes were further
separated into sub-categories. The contributions from differ-
ent sources were modeled by multiplying each a priori CO2

flux with the source footprint function as defined by eq. (3),

CO2;model ¼ CO2;bg þΔCO2;comb þΔCO2;NEE ð1Þ
ΔCO2;comb ¼ ΔCO2;ff þΔCO2;bb ð2Þ
ΔCO2 ¼ ∑n

i¼1

h�
footi � fluxCO2ð Þi

i
ð3Þ

where ΔCO2is the modeled hourly CO2 enhancement
(contribution) from CO2 sources (sinks), fluxCO2 represents
CO2 emissions from different source or sink categories, foot
is the concentration source footprint simulated using the
WRF-STILT model (Lin et al. 2003), and n is the integration
time that contributes to each simulated hourly enhancement.
Our previous work has shown that nearly 90% of the source
contribution was determined by the past 24 h (Hu et al. 2018).
Therefore, we set n = 7 days (168 h) to adequately account for
the CO2 enhancement; i is the corresponding hour over the 7-
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including a residential, b on-road transportation, c combustion in

manufacturing industry, and d biological CO2 flux in winter (unit mol
m−2 s−1) for 2014



day period. In general, each simulated hourly CO2 mixing
ratio is the sum of the accumulated enhancement and back-
ground value over the past 7 days.

The Stochastic Time-Inverted Lagrangian Transport
(STILT) model can simulate the source footprint function as
the air flows over the study domain and arrives at the obser-
vation site. STILT simulates the turbulent diffusion and hori-
zontal transportation by releasing a large number of particles
from the receptor (34 m tower) and tracks them backward in
time. The footprint defined here should be regarded as an
influence weighting function that defines how each
discretized surface grid cell contributes to the observation site
(Gerbig et al. 2003; Lin et al. 2003). STILT has been shown to
have a high accuracy and has been applied to many different
scalars (Mallia et al. 2015; Chen et al. 2016; Bagley et al.
2017; Hu et al. 2018). The footprint function is calculated as,

foot xr; trjxi; y j; tm
� �

¼ mair

hρ xi; y j; tm
� � 1

N tot
∑N tot

p¼1Δtp;i; j;k ð4Þ

where foot represents the influence for each upstream
location(xi, yj) at the time tm to the receptor (xr), h is the
influence height above each location and is estimated here as
as half of the modeled PBL height, ρ is the average air density
below the influence height, mair is the molar mass of dry air,
and Ntot is total number of particles released. Following pre-
vious work Ntot = 500.

The CO2 background mixing ratios were derived from the
Carbon Tracker global CO2 distributions, which were simulat-
ed by the TM5 transport model (Peters et al. 2007; Pillai et al.
2012). The meteorological fields from the WRF3.5 model
were used to drive the STILT model (details in section
BWRF model setup and verifications^). For each 7-day period,
we traced the 3-D locations of all 500 particles in the global
background CO2 dataset and obtained the average CO2 mixing
ratio which represents the background mixing ratio for each
hour (Peters et al. 2007; Karion et al. 2016; Chen et al. 2016).

WRF model setup and verifications

To obtain accurate meteorological simulations, we used the
common setup of 3 domains with 2-way feedback among each
domain. The spatial resolution for the outer to inner-most do-
main was 27, 9, and 3 km, respectively. As shown in Fig. 1,
domain 1 contains most of Central and East China (105 × 111
grid cells), domain 2 focused on the East China Region

(154 × 148 cells), and domain 3 contains the Yangtze River
Delta (253 × 223 cells). Initial and boundary meteorological
conditions were specified using the NCEP FNL 1o × 1o data
(http:/ /rda.ucar.edu/datasets/ds083.2). The model
configurations are displayed in Table 2. Here, we have
applied the model configurations that were tested and
verified by Hu et al. (2017) for the same study domains.
This previous study evaluated the WRF model performance
in simulating the variations of 2 m air temperature, wind
speed, wind direction, and downward shortwave radiation
for Nanjing city. The model results indicated a mean error
(ME) of 0.21 °C, 1.22 m s−1, − 39.57o, and 0.29 W m−2,
respectively. The root mean square errors (RMSE) were 1.
12 °C, 1.68 m s−1, 76.36o, and 161.72 W m−2, respectively.
The corresponding correlations between the simulated and
observed values were 0.95, 0.47, 0.58, and 0.89, respectively.
Overall, the model performed reasonably well.

Because the domain setup and WRF-STILT model is com-
putationally expensive, we restricted our footprint simulations
to the year 2014. Further, the CO2 mixing ratios during winter
were used to constrain the CO2 emissions. This strategy was
adopted to avoid the uncertainty introduced when considering
relatively large biological fluxes during the summer months
(Peters et al. 2007). The biological CO2 flux in winter is much
smaller as compared with anthropogenic emissions in our
Yangtze River Delta (Fig. 3d). Within the scope of YRD, most
of them are below 1 mol m−2 s−1, even a little uptake was
shown in the south of Anhui Province, while it will not have
toomuch effect on our observation site and it will be discussed
in Section BThree-year CO2 mixing ratio observations^. Here,
the modeled CO2 enhancements for Dec, Jan, and Feb asso-
ciated with biological contributions were 0.84, 0.41, and −
0.71 μmol mol−1, respectively. These biological enhance-
ments were negligible compared to the anthropogenic contri-
butions from fossil (i.e., typically > 30).

Constraining anthropogenic emissions

The Bayesian inversion methodology has been used to con-
strain emissions from a variety of sources (i.e., N2O, CH4, and
CO2) (Mckain et al. 2012; Chen et al. 2016; Pillai et al. 2016).
Here, we take a simplified inversion method to constrain the
total anthropogenic CO2 emissions. The observed CO2 en-
hancement was used to constrain a priori CO2 emissions.
The CO2 enhancement was estimated by subtracting the back-
ground values from the tower observations (section

Table 1 Monthly scaling factors applied for anthropogenic emissions for the study domains

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Domain 3 1.08 1.06 1.03 0.99 0.93 0.90 0.87 0.91 0.97 1.01 1.09 1.15

Domain 1 1.04 1.03 1.01 0.99 0.94 0.93 0.91 0.94 0.98 1.01 1.06 1.11

Environ Sci Pollut Res (2018) 25:23157–23169 23161

http://rda.ucar.edu/datasets/ds083.2


BSimulation of CO2 mixing ratios^). To reduce the potential
uncertainty of biological CO2 flux contributions, we restricted
our analyses to the non-growing season (December, January,
and February) (Shen et al. 2014; Xu et al. 2017). This is based
on the fact that observed CO2 concentration was much similar

in different years, and the simulation of CO2 concentration in
winter for only 1 year is enough to constrain anthropogenic
emissions. We consider at the monthly timescale that the bias
between observed and modeled CO2 enhancements is derived
from the bias in the a priori CO2 emissions. We then use the

Table 2 WRF3.5 physical
schemes Basic equations Non-hydro model

Microphysics WSM 3-class

Longwave radiation Rapid radiative transfer model (RRTM)

Shortwave radiation Dudhia scheme

Surface-layer Monin-Obukhov similarity scheme

Land surface Noah land surface model

Boundary layer YSU scheme

Cumulus Kain-Fritsch (new Eta) scheme (domain 1 and domain 2)

Fig. 3 aOne hour aggregated time series of CO2 mixing ratio fromMarch 2013 to August 2015, and bmonthly averaged concentration and its standard
deviation through the observation period

23162 Environ Sci Pollut Res (2018) 25:23157–23169



enhancement ratio derived from the winter analysis to update
the a priori emission map (Bray et al. 2017).

There are a number of uncertainties associated with our
inversion methodology. The most important ones include bias
in the a priori CO2 emissions; errors in the background CO2

data and observed mixing ratio; bias in the meteorological
forcing data from WRF3.5, and the associated uncertainties
in the back trajectories simulated by STILT. To account for the
overall uncertainties, we take a Monte Carlo approach to as-
sign uncertainty for each of the above factors (Brown et al.
2012; Shen et al. 2014). Here, we assign an uncertainty of
21% to the simulated PBL height from WRF3.5 following
Chen et al. (2016); a 13% uncertainty was assigned to the
STILT back trajectories (Gerbig et al. 2003; Miller et al.
2008; Chen et al. 2016, Chen et al., 2018). The uncertainty
in the background CO2 fields from Carbon Tracker’s global
CO2 distributions was assigned a value of 2% based on pre-
vious study (Hu et al. 2018). Here, we assume normal distri-
bution of each uncertainty with a mean value of 1. Using eq. 5,
we performed the Monte Carlo simulation using 10,000 iter-
ations to derive a total uncertainty for the inversion.

SPBL � Sparticles � Sbackground � x� Renhancement raio ¼ 1 ð5Þ

Where SPBL, Sparticles, and Sbackground represent uncertainty
in PBL, particles’ numbers, and CO2 background fields, respec-
tively.X is the ratio between observed enhancement andmodeled
enhancement in the 3months, andRenhancement_ ratio is our derived
scaling factors for the anthropogenic CO2 emissions.

Results and discussion

Three-year CO2 mixing ratio observations

The CO2 mixing ratio observations from March 2013 to
August 2015 are shown in Fig. 3a. These data indicate that
there was very little seasonal variation among the 3 years. The
short-term variations, however, were large and exceeded
100 μmol mol−1. These large CO2 variations were influenced
by the direction of air flow and the influence of industrial
zones. There was a strong interaction between meteorological
conditions and surface CO2 flux that caused pronounced
changes in atmospheric CO2 mixing ratios (Ahmadov et al.
2009; Guha and Ghosh 2010; Ballav et al. 2016). For instance,
relatively shallow PBL depth and simultaneous large surface
emissions cause atmospheric mixing ratios to exceed
500 μmol mol−1. In 2014, CO2 mixing ratios ranged from
390.0 to 560.7 μmol mol−1, much smaller than the range
(372.2 to 635.6) reported for Beijing in 2013 (Pang et al.
2016), where large coal combustion occurred during the
heating seasons. Here, we focus our attention on the CO2

enhancements, which can provide more insights regarding

the CO2 contributions from local sources. The typical CO2

enhancements in spring, summer, autumn, and winter were
23.52~49.65 μmol mol−1, 21.36~52.37 μmol mol−1,
28.14~55.41 μmol mol−1, and 29.51~42.35 μmol mol−1, re-
spectively. These values were slightly higher than the summer
observations reported for Salt Lake City, USA (i.e.,
25 μmol mol−1 in summer) (Pataki et al. 2003), and were
nearly fourfold larger than values reported for Chicago (i.e.,
7.3 μmol mol−1 enhancement) during the summer (Moore and
Jacobson 2015). The relatively high enhancement values in
our observations reflect the large population density and asso-
ciated fossil fuel consumption in the YRD.

To eliminate the short-term variations, we examined the
monthly averaged CO2 mixing ratios (Fig. 3b). Figure 3b indi-
cates an important drawdown in CO2 mixing ratios during the
growing season (May–September) resulting from photosynthe-
sis. Each year showed a similar influence of net ecosystem CO2

exchange on the summertime CO2 mixing ratios. Observations
in winter will be used to constrain and evaluate anthropogenic
CO2 flux for the low CO2 signals from plants’ respiration.
Interestingly, the observed CO2 mixing ratios in February were
much lower than in the previous January (11.5μmolmol−1) and
following March (5.9 μmol mol−1). We hypothesize that this
was caused by the relatively lowCO2 emissions associated with
the traditional Chinese New Year holiday. However, our model
results indicated similarly low CO2 mixing ratios in February
despite having the same a priori emissions as observed in other
months (see details in section BComparing modeled versus ob-
served CO2 mixing ratios^). Therefore, the relatively low CO2

mixing ratios observed in February appear to be related to the
atmospheric circulation.

Variations of concentration footprint and cumulative
CO2 mixing ratio enhancement

To help understand the source areas that contribute to the ob-
servation site, we examined the cumulative CO2 enhancement
and its proportional change with time (Fig. 4). The total CO2

enhancements in December, January, and February exhibited
large differences with December values (35.9 μmol mol−1) >
January values (29.2 μmol mol−1) > February values
(25.0 μmol mol−1). These model results were consistent with
the CO2 mixing ratio observations (Fig. 4b). Taking into ac-
count the difference in anthropogenic CO2 emissions used for
different months are within 10%, it indicated meteorological
conditions lead to this large difference, and our model config-
uration can well model the PBL characters in different months.

Nearly 85% of the CO2 enhancement was accumulated
within a period of 24 h (Fig. 4b). Given a measured average
wind speed of 10 m s−1, we estimated that the source area that
contributed 85% to the measured CO2 enhancements was
within a radius of about 1000 km. This indicates our observa-
tions are representative of the broader YRD region. We also
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note that compared with other part in YRD, the Nanjing mu-
nicipality should have much high influence weight. Our re-
sults were similar with the definition in Shen et al. (2014),
who applied the CO2 concentration at 34m height to represent
YRD in daytime and Nanjing in the nighttime considering the
difference of boundary layer structures.

The source footprint functions were averaged on monthly
timescales (Fig. 5) to help understand how variations in cli-
mate influence the tower observations. The annual average
footprint (Fig. 5e) was more uniform for all directions than
the monthly average. The northeastern monsoon in winter
played an important role in changing the pattern of the foot-
print function giving it a strong northwest-southeast influence.
Hu et al. (2011) and Chen et al. (2016) defined the most
sensitive area contributing to the observation site as log10
(footprint) larger than − 4 (footprint units ppm μmol−1 m2 s).
Here, the most sensitive footprint distance contains the major-
ity of YRD, the eastern Anhui province, and the western
Jiangsu province. These results support that our observations
obtained at the 34 m height are strongly influenced by anthro-
pogenic CO2 signals from within the broader YRD area.

Here, we combine the computed annual footprint function
with the a priori anthropogenic CO2 emissions to calculate the
CO2 enhancement at the observation site. We followed the
study of Shen et al. (2014) and separated the whole day into
daytime (daytime as 10:00~17:00) and nighttime (nighttime
as 23:00~5:00) contributions (Table 3). This separation is im-
portant as the footprint function varies according to these dif-
ferent planetary boundary layer conditions. The source area
during the daytime was much smaller than during nighttime
with lgF < − 3 (here, lgF refers to log10 (footprint). Therefore,
anthropogenic CO2 enhancements were associated with more
local sources during the daytime and controlled by much
stronger vertical turbulence. When choosing the source area
with lgF > − 2.5, its area varied between 5.1 × 103 km2 and
12.5 × 103 km2, which was close to Nanjing municipality
(6.6 × 103 km2). Also, the source areas with lgF > − 3.5 repre-
sented area between 1.5 × 106 km2 and 1.7 × 106 km2, close to
YRD (1.1 × 106 km2). Gloor et al. (2001) and Chen et al. (2014)
applied backward trajectory method to quantify atmospheric

CO2 source areas for tall towers with 100~200 m height. Their
footprint area estimates were about 106 km2 and in close
agreement with our findings. Based on different footprint
criteria, the averaged anthropogenic CO2 flux varied consid-
erably. For instance, CO2 emissions from oil production/
refineries decreased rapidly as the source footprint function
distance increased indicating that industrial complexes played
an important role as local sources.

Comparing modeled versus observed CO2 mixing
ratios

Monthly mean diurnal variations between the observations
and model simulations are compared for the winter period
(Fig. 6). In general, the modeled results (denoted as
Modeledh in Fig. 6) are close to the observations and exhibit
similar diurnal patterns. The model results were a little smaller
than observations in the daytime, and on the contrary in night-
time. This pattern resulted mainly from diurnal variations of
the CO2 emissions used in theWRF-STILT model. Here, only
on-road emissions have a large diurnal pattern (0.2–1.8),
while the scaling factors for industrial emissions show little
diurnal variation and also account for the majority of the re-
gional emissions. We performed a sensitivity test by applying
on-road diurnal patterns on industry emissions; situations im-
proved a lot during the nighttime as shown in Fig. 6d
(Modeleds). As shown in Fig. 6a–c, the WRF-STIL model
can capture most of the synoptic variability at higher temporal
resolution and will miss some of synoptic variability in the
nighttime. It may be caused by both the modeling of synoptic
scale systems and abrupt change of CO2 emissions that cannot
be reflected by CO2 emission maps. Also, the model ability in
simulating the PBL height can directly affect the simulation of
CO2 mixing ratios. Previous study indicated the simulated
PBL height in nighttime may have larger uncertainty than in
daytime, and lower simulation of PBL height can lead to
higher CO2 concentration, and vice versa (Bagley et al.
2017). Given the lack of direct PBL height observations, we
cannot quantify the extent to which a bias would impact our
results. Fu et al. (2017) compared modeled and observed PBL

Fig. 4 Time series of accumulated CO2 enhancement and its proportional change over the past 7 days
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height with the similar domain configuration setup as ours but
for Minneapolis, USA. They concluded that modeled PBL
heights were in good agreement with PBL height observations.

The anthropogenic CO2 enhancements have been shown to
vary widely in the literature. Ahmadov et al. (2009) simulated
the CO2 enhancement contributed by fossil fuel at a coastal
city site in France and found that the hourly contributions
were within about 4 μmol mol−1 with monthly average
values of about 1 μmol mol−1, which was caused by low
anthropogenic activities and differed largely with the situ-
ation in Yangtze River Delta. Research conducted in Berlin,

Germany, also found much lower enhancement values of
6.3 ± 2.9 μmol mol−1 than our results. While for the industrial
city of Salt Lake City, USA, the anthropogenic CO2 enhance-
ment in the summer of 2007 and the maximum enhancements
were larger than 30 μmol mol−1 (Mallia et al. 2015) and much
closer to our findings. Hu et al. (2018) simulated 3 years CO2

enhancement at an agricultural-urban landscape in
Minneapolis-Saint Paul metropolitan, USA and concluded
the annual CO2 enhancement varied between 6.6 and
7.4 μmol mol−1. Most of the anthropogenic CO2 enhancement
was contributed by fossil combustion from industries.

Fig. 5 Averaged footprint for a December, b January, c February, d Winter, and e the whole year (unites log10 (ppm μmol−1 m2 s))
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CO2 sources and their influence on observed
and modeled enhancements

Differences in the monthly averaged CO2 enhancements
between observations and model results are shown in
Fig. 7. The results indicate a negative bias when using
the a priori emissions from 2010 (S1). These a priori
emissions do not include the changes that have occurred
over the period 2010 to 2014. The rat io of 1.18

(recommended by EDGAR for all of China) was applied
and is shown as S3 and obviously has a positive bias than
observations (S3). Oil production (refinery) industries
contributed the largest enhancement compared to other
source categories., which represented the role of such
industry in YRD’s local CO2 budget, and its proportions
varied largely in these 3 months, indicating source areas
changed controlled by meteorological conditions rather
than emissions.

Table 3 Averaged anthropogenic emissions based on footprint categories for daytime and nighttime in winter

Nighttime [0, − 1] [− 1.5, − 1] [− 2, − 1.5] [− 2.5, − 2] [− 3, − 2.5] [− 3.5, − 3] [− 4, − 3.5]
Area (100 km2) 1 1 9 51 242 1467 5664

Manufacturing industry 14.49 9.82 5.77 6.48 4.91 5.61 2.73

Energy industry 0.00 0.00 16.47 18.00 8.85 5.63 4.78

Nonmetallic mineral processes 13.46 8.60 5.04 2.87 2.26 1.72 1.26

Oil production/refineries 97.42 47.05 10.15 2.94 0.95 0.53 0.38

Residential 3.83 2.60 1.69 1.12 0.99 0.75 0.64

Total anthropogenic emissions 132.83 70.86 40.86 33.13 19.26 15.50 10.59

Daytime

Area (100 km2) 1 9 40 125 437 1682 5097

Manufacturing industry 10.84 14.84 10.82 4.89 4.51 7.07 2.71

Energy industry 0.00 0.00 5.52 12.26 11.71 7.54 4.49

Nonmetallic mineral processes 10.07 13.79 9.57 4.23 2.27 2.09 1.24

Oil production/refineries 194.84 172.51 43.13 8.21 1.70 0.60 0.38

Residential 2.86 3.92 2.86 1.48 0.99 0.90 0.64

Total anthropogenic emissions 221.56 208.77 74.88 32.63 22.51 19.70 10.24

Fig. 6 Comparisons of observations and model results for a hourly CO2

concentration in January, b February, c December, and d time averaged
CO2 mixing ratio diurnal variation between observations and modeled

results (Dec-Jan-Feb), Modeledh, Modeledc, Modeleds represents hourly
varied emissions, constant emissions, and intensive emissions
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Monte Carlo simulations were performed to derive scaling
factors based on the difference between observations and
model results (methods descripted in section BConstraining
anthropogenic emissions^). Here, we derived mean values of
0.91 and 0.25 for standard deviations from our Monte Carlo
results. So, we concluded here that the anthropogenic CO2

emission should be 0.162 (± 0.005) mg m−2 s−1, and it is 7 ±
3% higher than the emissions for 2010 for the Yangtze River
Delta. Our results are in good agreement with Xu et al. (2017),
who concluded that anthropogenic CO2 emission was 0.17 (±
0.02) mg m−2 s−1 for YRD in 2014 based on IPCC method.
Further, Shen et al. (2014) calculated the anthropogenic in
YRD and reported a mean flux of 0.10 mg m−2 s−1 in 2009.
According to the National Statistic Yearbook (Xu et al. 2017),
the large observed increase of anthropogenic CO2 emissions
can be explained by the fact that the GDP has increased by
56% since 2009. Our findings and conclusions indicate
high potential in anthropogenic CO2 retrievals based on
the inversion methodology described here. We note here
that our results are based on the assumption that anthropo-
genic emissions have the same biases at local and regional
scales and that uncertainty may exist given the potential for
strong Baggregation error^ (Zhao et al. 2009; Turner and
Jacob 2015). Given the development of a greenhouse gas
monitoring network for the greater YRD area, the new ob-
servations and inverse modeling should allow us to reduce
the uncertainties in the anthropogenic CO2 emission esti-
mates. In this study, we have not evaluated the extent to
which uncertainty in the PBL height can impact our results.
In future work, we will make use of radiosonde data to
evaluate these uncertainties.
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