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Abstract Recently atmospheric brown carbon (BrC) is recogpghias an important
contributor to light absorption and positive climdbrcing. In this work, daily fine
particulate matter (Ph) samples were collected over a full year (May 261€ay
2016) in Nanjing, and seasonal light absorptivepprties of water-soluble BrC were
investigated. We found that winter samples hadsthengest light absorption among
four seasons. The light absorption at 365 nm {&pgor all seasons linked closely
with secondary organic carbon (SOC), indicating anithant contribution from
secondary sources to BrC. However primary biomassiihg might also contribute to
BrC as revealed by the good correlations of Adgersus levoglucosan fragments
and/or K, and such influence was more evident during sumierthermore, an
Aerodyne soot-particle aerosol mass spectromet&-AM8S) was employed to
determine the elemental ratios of BrC. We found thaept in winter, the Alss in
general positively correlated with the average atiah states (O$ of BrC,
suggesting more BrC were produced at higheg. @8e mass absorption efficiency at
365 nm (MAEgs) showed no clear dependences on OSc during sgumymer and
fall, but decreased against Od@uring winter, indicating chemical aging may ld¢ad
photo-bleaching of WSOM in winter. Moreover, pogtiresponses of Abs to N/C
ratios were found during all seasons, indicatingogen-containing organics can be
important BrC chromophores. Potential source apé&C were further discussed to
improve our understanding of BrC sources in thggae. Keywords: Brown carbon;

Light absorption; Aerosol mass spectrometry; Seaonderosol; Biomass burning
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1. Introduction

Atmospheric aerosol particles play an importane rial earth’s radiation budget
and global climate change (e.g., Carslaw et allp20Black carbon (BC) is typically
treated as the most important aerosol componedinigdo positive radiative forcing
(e.g., Bond et al., 2013; Wang et al., 2017). Wheleent studies indicate that a certain
fraction of organic aerosols, often called “Brovarkwon (BrC)” can also absorb lights
at the wavelengths of near-ultraviolet (UV) andibliss ranges (e.g., Bahadur et al.,
2012; Cappa et al., 2012; Chen and Bond, 2010Kistter et al., 2004; Lack et al.,
2012a; Laskin et al., 2015; Pokhrel et al., 201aleB et al., 2013; Saleh et al., 2014).
The radiative forcing of BrC has been estimateda&019~24% of the total aerosol
absorption (Feng et al., 2013; Liu et al., 2015ahet al., 2017a).

Both laboratory and field studies have shown the® Ban be produced from
multiple sources, including primary emissions fréwssil fuel combustion (Bond et
al., 2002; Yan et al., 2017) and biomass burningaiabarty et al., 2010; Lack et al.,
2012a; Washenfelder et al., 2015), as well as skognformation through various
reaction pathways including gas-phase and aqueawsions (e.g., Hems and Abbatt,
2018; Laskin et al., 2015; Lin et al., 2015; Sadekal., 2013; Zhong and Jang, 2011).
The absorptivities of BrC generated from differsaurces are highly variable due to
the different structures and concentrations of Bn@mophores (Laskin et al., 2015;
Nguyen et al., 2012; Xie et al., 2017). A numberstifdies have been conducted to

identify the BrC chromophores, but only a smalkfien of organic chromophores
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has been identified, including nitrophenols, aramat carbonyls,
oxygenated-conjugated compounds, nitroaromaticssatidr-containing compounds
(e.g., Desyaterik et al., 2013; Lin et al., 201&ich et al., 2017; Xie et al., 2017).

The BrC absorption can be directly measured bgrfitased online instruments
(Kirillova et al., 2016; Nakayama et al., 2015)clsuas the multi-angle absorption
photometer (MAAP) and non-filter-based instrumehtskin et al., 2015; Shamjad et
al., 2015), such as photoacoustic spectroscopy )(RA8 cavity ring-down (CRD)
spectroscopy (Lack et al., 2012a; Lack et al., 20@6k et al., 2012b; Pokhrel et al.,
2017; Pokhrel et al., 2016). Moreover, water-s@uldrC has been measured
semi-continuously by a particle-into-liquid sampl@?ILS), coupled to a liquid
waveguide capillary cell (LWCC) and an absorbarmecsometer (Liu et al., 2013;
Satish et al., 2017). In addition, light absorptioreasurements on offline filter
extracts have been conducted in both laboratogy, €hen and Bond, 2010; Liu et al.,
2016) and field studies (e.g., Chen et al., 201&g et al., 2017c). The advantage of
this approach is that the interference by BC caavmeded. Compared to the online
methods, offline technique can be easily perforimecbmbination with other offline
measurements for a better characterization of BrC.

The Yangtze River Delta (YRD) region is one of thest populated areas in
China. Nanjing, as the second largest city and ptmincial capital of Jiangsu
Province, is also facing severe air pollution isfdkang et al., 2016a). Some studies

(e.g., Wu et al., 2017; Zhang et al., 2017b; Zhangl., 2015) show that the organic



83

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

aerosols (OA) can account for a remarkable proportif fine aerosol mass and are
originated from multiple sources, including primayraffic, cooking, industry,
biomass burning and biogenic emissions) and secgrstarces (agueous-phase and
photochemical processing). Hundreds of organic ispe¢polycyclic aromatic
hydrocarbons, carboxylic/dicarboxylic acids, homanghthalates, amines and amino
acids, etc.) have been identified (e.g., Wang .e8ll1; Wang et al., 2009; Wang et
al., 2007). Recently, a 3-year result of light apson of BrC in Nanjing based on
continuous measurement combined with Mie-theorgutations was reported (Wang
et al., 2018). The results demonstrate a significantribution of BrC to total aerosol
absorption (from 6% to 18%, and up to ~28% in bissnaurning dominant season
and winter). Nevertheless, studies regarding tiig kbsorption of BrC are still scarce
in this region. In this work, we investigated thght absorption properties of the
water-soluble BrC via a series of offline measunetsdéor PM s samples collected in
Nanjing during 2015~2016. We focus on its seasdmethaviors, sources and

dependences on bulk chemical properties.

2. Experimental Methods
2.1 Sample collection

A high-volume sampler (Laoying Ltd., Qingdao, mo@éB1) with a flow rate of
1.05 niminwas set on rooftop of a seven-floor building (~2above the ground)

inside the campus of Nanjing University of Informat Science and Technology in



104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

the northern suburb of Nanjing (32.21°N, 118.72(Epure S1 in the supplement).
More details can be found in our previous studyr{gvat al., 2016b). A total of 272
PM, ssamples were collected daily (22 hours, from 12080. to 10:00 a.m. of the
next day) from May 4, 2015 to 4 May, 2016. The sksmpvere collected onto
pre-baked (456C for 4 hours) quartz fiber filters (8x10 inch, Rafe Science, USA).
Two field blanks were treated in the same manndorathe samples. The PMmass
concentrations were determined gravimetrically gisen digital balance (OHAUS
DV215CD, precision 0.01 mg) immediately after filwollection. The filters were
then wrapped in aluminum foil, sealed in polyethgdags and stored at I3 until
analysis.

During sampling, meteorological parameters (tentpeea relative humidity,
wind speed, wind direction) were recorded at théemrelogical station located near

the sampling site (~50m distance). Original hodidya were averaged into daily data.

2.2 Chemical analyses

OC/EC: One punched piece (diameter: 17 mm) of each filtes analyzed for
organic carbon (OC) and elemental carbon (EC) otstéy the thermal-optical
OC/EC analyzer (Sunset Laboratory, USA) followirng tstandard protocol (Birch
and Cary, 1996; Cao et al., 2017).

lonic species. Two 10 mm diameter filter punches of each filterevextracted

with 15 mL ultrapure water (18.2Mcm, TOC< 5ppb), sonicated for 40 min &€0n
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an ice-water bath, filtrated through 0.4B syringe filters (Spartan, Whatman): K
concentrations used in this work were determine@ryon chromatograph (Aquion,
Thermo Fisher Scientific, Waltham, MA, USA) equippwith a Dionex CS12A

column (20mM methanesulfonic acid as eluent). tmegnt and operational details
are the same as those described in Ye et al. (2017b

WSOC and UV-Vis absorption: A quarter of each filter was extracted with 100
mL ultrapure water similar as for ionic species.eTwater-soluble OC (WSOC)
concentrations were quantified by a TOC-VCPH aredy&himazu, Japan) using a
thermo-catalytic oxidation approach. Detailed prhoes are described in Ge et al.
(2014). The ultraviolet-visible (UV-Vis) light abgation spectra of the water extracts
were measured using a UV-Vis spectrophotometer 3680, Shimadzu, Japan) as
described in Zhang et al. (2013).

WSOM: The offline SP-AMS analysis details were similarttmse reported
previously (e.g., Ye et al., 2017a; Ye et al., 201 Briefly, the water extracts were
nebulized with argon using a constant output atemid'SI Model 3076). The
generated aerosols were dehumidified by a silitdiffasion dryer, and subsequently
analyzed by the SP-AMS. Purified water was aerpsdlibefore every sample
measurement to cleanse the system, and extratisriK filters were treated in the
same way as a system blank. Note the offine AM3iigiue was mainly used to
obtain the ion-speciated mass spectra of watebiohrganic matter (WSOM) (e.g.,

Chen et al., 2017; Daellenbach et al., 2016; Dak#eh et al., 2017; Ge et al., 2017;
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Ye et al., 2017a). In this work, we only used tharental ratios determined by the
SP-AMS measurements. Examples of the high resolutiass spectra(HRMS) of
WSOM were presented in Fig. S2. Detailed mass sgeanalyses and source

apportionment of WSOM will be presented in our fetwork.

2.3 Data analyses
2.3.1 Light absorption coefficients
The UV-Vis light absorption data were fitted into mower law function
(Hecobian et al., 2010) over the range 300~600 crording to:
Abs, =k - 1A (1)
Where Abs is the light absorbance at wavelengitk is a scaling constant, and A is
the absorption Angstrém exponent (AAE) which ddsesithe spectral dependence of
light absorption from chromophores in solution.
The light absorption data is converted to an alismrpcoefficient at a
wavelengtht (Abs,, Mm ™) by equation (2) (Hecobian et al., 2010):
Abs; = (4; — Ayge) -A%ln(lO) ()
WhereA;qo (Mmean value of 695 - 705 nm) is a reference towucfor baseline drift,
V, is the volume of water that filter was extracteth iV, is the volume of sampled air,
and L is the optical path length (1 cm) of the quartz etter in the UV-vis
spectrometer.

The mass absorption efficiency (MAEZgt) at 365 nm was then calculated by



167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

equation (3): MAE;¢s = Absses 3)
Cwsoc

Where Cwsocis the WSOC concentration. We used WSOC conceotsithere for
consistency and comparison with previous resuit$att, as we are able to calculate
the WSOM concentrations (Section 2.3.2), we canerdehe MAREgs using
Abszss/Cwsom. Scatter plot of the two sets of MAswas shown in Fig. S3. They
correlated very wellr(of 0.96) but differed with a factor of ~2 as theemge OM/OC
ratio was ~2 (Section 2.3.2).
2.3.2 Elemental and OM/OC ratios of WSOM

The SP-AMS data were analyzed using the Igor-bakeetAMS Analysis
Toolkit (Squirrel v.1.57A and Pika v1.16A, availabl at:
http://cires.colorado.edu/jimenez-group/ TOFAMSReses/ToFSoftware/). The CO
signals were from fragmentation of organic spedcigthout influences from BN
signals, as we used argon as carrier gas. Due doptssible influences from
carbonates on organic GOsignals (Bozzetti et al., 2017; Xu et al., 2018}, set it
equal to CO. Signals of HO*, HO" and O were then scaled to GDaccording to
Aiken et al. (2008)): KD" = 0.225xCQ", HO" = 0.05625xC@, and
0"=0.009xCQ".

The oxygen-to-carbon (O/C) and hydrogen-to-carbd¢t/C) ratios were
calculated according to Canagaratna et al. (20d#)pgen-to-carbon (N/C) ratios

were derived based on Aiken et al. (2008), all dbiclh were used to calculate the

organic matter-to-organic carbon (OM/OC) ratiose WSOM concentrations were
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then calculated by using the WSOC concentratiotsroiéned by the TOC analyzer
(Section 2.2) and the OM/OC ratios (OM/@$on), as shown in equation (4):
WSOM = WSOC - (OM/OC)wsom (4)

The annual average OM/OC ratio was 2.02 + 0.1 égeert 10 )(1.79~2.24),
consistent with the values for WSOM reported earfiku et al., 2017; Ye et al.,
2017c¢).

2.3.3 Primary and secondary OC estimations

The EC-tracer method (Turpin and Huntzicker, 198%)s used to infer the

primary OC (POC) and secondary OC (SOC), as follows

POC = EC - (OC/EC) i (5)

SOC = 0C — POC (6)

Where (OC/EC),; refers to the OC/EC ratio for primary OA, and tménimum
measured value (1.63) among all samples was used Ihehould be noted that such
treatment may introduce uncertainties as the pgin@h (such as biomass burning
and coal combustion emissions) may have large OC#EGS, and the ratios also vary
among different sources. However, as EC is exatgifrom primary sources, the
POC scaled from EC also come from primary sourtes;accuracy of POC/SOC
estimates is difficult to quantify, a reasonablgneste is <20% for our study based on
Wu and Yu (2016), considering the measurement teioéies of <12% for OC and
EC (Ye et al., 2017c), an average SOC/OC of 0.68,aasampling size of 272.

In addition, the concentrations of water-insoluttganic carbon (WIOC) can be

10
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calculated by equation (7):
WIOC = 0C — WSOC (7)

2.3.4 Air mass trajectories

The calculations were carried out with ZeFir, anrigased tool (Petit et al.,
2017). The 36-h back trajectories (at 500m heigidje calculated by the HYbrid
Single-Particle Lagrangian Integrated TrajectoryY@PLIT, version 4.8) model
(Stein et al.,, 2016) developed by the National @umeaand Atmospheric
Administration Air Resources Laboratory.
2.3.5 Potential source contribution analyses

The potential source contribution function (PSCRalgsis was performed to
explore the air mass origins and to identify patrsiource areas. The methodology is

described elsewhere (Polissar et al., 1999). Bridie PSCF is calculated as:

PSCF;j = ’:—J’ 8)
Wheren; is the total number of trajectory endpoints in tf cell, andmy; is the
number of trajectory endpoints in thg" cell associated with values above the
threshold value. The PSCF analysis was also caotédavith the ZeFir toolkit with a
resolution of 0.2°x0.2° for each grid cell. The"7Bercentile was chosen as the

threshold value to calculats;. In order to reduce the influences of snmllon the

PSCF values, a weighing function has been impleadefRetit et al., 2017):

11



(100 formn = 0.85max(log(n;; + 1))
0.725 for 0.6 max(log(nij +1)) <log(n+1)
< 0.85 max(log(nij + 1))
0.475 for 0.35 max(log(nij +1)) <log(n+1)
<0.6 max(log(nij + 1))
L 0.175 for log(n + 1) < 0.35 max(log(n;; + 1))

229

230 3. Resultsand discussion

231 3.1 Wavelength dependence of light absorption

232 The samples were classified into spring (March-Mag85), summer
233  (June-August, n=45), fall (September-November, n=64) and winter
234  (December-Februarp=78). Figure 1a presents the average light absorgpectra of
235 the water-soluble species during four seasons tandutl year within the wavelength
236  (A) range of 300 -600 nm. Overall, the average lajigorption of winter samples was
237  significantly higher than those of spring, summed &all, and leading to a relatively
238 high annual absorption spectrum. This is correspntb the high concentrations of
239 light-absorbing species in winter samples (detailsSection 3.2). The absorption
240 intensities for all samples increased sharply towahorter wavelengths. Such shapes
241  are consistent with previous findings of BrC (e@hen et al., 2016; Hecobian et al.,
242  2010; Liu et al., 2013), indicating that the WSOM & fraction of WSOM) obtained
243  in this study was BrC.

244 We further calculated the AAE values through tmedir regression of log(Abs)

245 vs. log(M) (the natural logarithmic form of equation (1)) tile wavelength range of

12
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300~600 nm. The AAE values and relevant opticapprtes of BC and BrC can
differ substantially among different situationsv&el studies report that the AAE of
fresh BC particles is ~ 1 (e.g., Bond, 2001; Kitekier et al., 2004), while the BC
particles with thicker coating can have a higherBA@s large as 1.6) even the coating
species do not absorb light (Gyawali et al., 2008yawali et al. (2009) also
illustrates that vehicular-related and biomass imgrmerosols have different optical
characteristics. Much higher AAE values rangingnfre3 to ~12 are reported for
water extracts of ambient aerosols collected frobam and rural sites (Cheng et al.,
2016; Du et al., 2014; Kim et al., 2016; Kirilloeaal., 2014; Yan et al., 2015; Zhu et
al., 2017). The laboratory chamber generated pesticom various wood smoldering
can also have large AAE values between ~7 and €hér( and Bond, 2010). It is also
worth to mention that AAE is also pH-dependent (Btoal., 2017; Phillips et al.,
2017).

In this work, the average AAE values during fouasens were 7.15, 7.28, 6.84
and 6.74, respectively (Fig. 1b). The annual aver®4E value was 6.89. Different
from the absorption spectra shown in Fig. la, tiAdA/alue during winter was the
lowest while the mean AAE of summer samples was lHrgest, suggesting
remarkably different chemical compositions and/ourses of BrC during four
seasons. Overall, the level of AAE values observerk is comparable with some
previous results determined for the water-solulie Pspecies extracted by using the

similar extraction protocols, such as in Tibetaat®u (6.2 and 6.9) (Zhang et al.,

13
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2017c; Zhu et al., 2017), Beijing, Chin&@.2 ~ 7.5) (Cheng et al., 2011), and Los
Angeles basin (7.6) (Zhang et al., 2013), etc. tBet AAE values also appear to be
higher than those in high-altitude Himalayas an@8-~5.6) (Kirillova et al., 2016),
Seoul, Korea (5.84 in winter) (Kim et al., 2016J)eBe studies demonstrate that the
BrC might be related to primary biomass burning ssioins and/or photochemical
SOA formed from anthropogenic gaseous precursdighnare implicate for the BrC

source analyses in Nanjing as well.

3.2 Seasonal variations and sources

We calculated the light absorption at 365 nm bsn M mi') as a proxy to
represent the light absorption of water-soluble Ba€ Absss can avoid interferences
from non-organic species (such as inorganic nitf@decobian et al., 2010). The time
series of Abgs, MAE3ss, RH, temperature, wind direction (colored by wsmked),
and the concentrations of BM WSOC, OC, EC and K over the full year are
displayed in Fig. 2. Correspondingly, the seasamnal annual averaged values of the
aerosol species, Alsand MAEsgs are further shown in Fig. 3a. The annual average
PM,s OC, WSOC, EC, K Absyes and MAEsgs values were 114.5 ugini5.2 pg
m?3, 7.2 pg nt, 3.2 ug n¥, 0.7 pg ¢, 5.7 M m' and 0.76 mg™* C, respectively. In
particular, the annual MAdgs value is much lower than the results determinec by
multi-wavelength Aethalometer (Model AE-31) in Xgre, China (2.2 at 370 nm)

(Yang et al.,, 2009) and Nanjing (11.4 in winter &h@ in summer) (Wang et al.,

14
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2018), methanol-extracted BrC in Beijing (1.45) €@b et al., 2016), in Los Angeles
basin (2.27) (Zhang et al., 2013). But the valugis® comparable with some previous
values determined by online PILS-LWCC-TOC systen71D (Zhang et al., 2013),
and those in Southeastern United States (0.64inba&n sites and 0.58 in 6 rural sites)
(Hecobian et al., 2010) and Central Indo GangelanR1.16) (Satish et al., 2017),
etc.

The annual WSOC/OC ratio was 0.46 £ 0.1, highedummer (0.59 + 0.12),
followed by fall (0.49 £ 0.09), winter (0.47 £ 0)08nd spring (0.43 £ 0.12). These
ratios are well within the range of WSOC/OC ratiegorted earlier (Ye et al., 2017b;
Zhang et al., 2018). The SOC/POC ratios were 2.1128, 1.83 + 1.19, 2.28 £ 1.28
and 3.17 £ 1.66 in spring, summer, fall and wintespectively. The Ahgs value was
highest during winter (9.44 + 4.70 Mhand lowest during summer (3.31 + 2.36 M
mY), while the spring and fall samples had similaluea of 4.32 + 2.28 and 4.70 +
2.35 M, respectively. The seasonal order of Abwvalues was in line with their
corresponding PWMYOC/WSOC concentrations, indicating the close @ships
between the BrC light-absorbing ability with levetd aerosol pollutions. The
seasonal variability also reflected the differenoésoncentrations of BrC species,
sources and water solubility of the light-absorbaimgomophores. A similar seasonal
trend of Absgs is also reported in Seoul, Korea (Kim et al.,, 201t its value
(0.87~7.31 M 1) is lower than those determined here. Thesxseasonal behavior

(lowest Absgs in summer and highest in winter) is also simil@hvthose observed in

15



309 other areas of China. For examples, thes&@lues in Beijing, China (Du et al.,
310 2014) are 4.6 M min spring, 3.7 M ritin summer, 9.1 M fin fall and 10.1 M rit
311 in winter; in another study, the Adgs values over the southeastern Tibetan Plateau
312 (Zhu et al., 2017) are 0.85 Mhin spring, 0.38 M nfin summer, 0.55 M fhin fall
313 and 1.04 M ritin winter. Moreover, the MAEs of the four seasons were 0.68 gt
314 C, 051 mMgC, 0.70 M g* C and 1.04 mg* Cduring spring, summer, fall and
315 winter, respectively, which was also in the sandepas that of Akgs (Fig. 3a). This
316 result highlights that for the same amount of Bi®se during winter appear to have
317 astronger light-absorbing ability.

318 Figure 3b shows the correlation coefficienty ¢f Abssss versus PMs OC,
319 WSOC, EC and K for different seasons and the whole year. Generahe
320 correlations with WSOC were strong across four aeag of 0.80~0.93), and on a
321 yearly basis, the correlation coefficient was 0(8%y. 4a). Together, these results
322 suggest that a significant fraction of WSOC is Brtomophores and the similar
323 sources for WSOC and water-soluble BrC throughtwet year. The correlations
324  between Abgsand OC were also tight f 0.82~0.93) as the temporal variations of
325 OC varied closely with WSOC in this study df 0.91, Fig. 4b). The correlation of
326  Abssgs versus EC was weak, ranging from 0.33 to 0.5XHerfour seasons Of 0.36
327 for all samples). Similarly, the correlation coeiint between Akgsand POC was
328 also 0.36 (Fig. 4c) as the POC concentrations wéextly scaled from EC using

329 equation (5) in this study. On the contrary, thereation between Ahgswith SOC

16
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was apparently much tighter ¢f 0.86, Fig. 4e). These results demonstrate ttiet
water-soluble BrC is abundant of secondarily forrspdcies rather than the primary
species. Correspondingly, it is expected that tO&€ Svas strongly associated with
WSOC ¢ of 0.89, Fig. 4f), while the POC was more likelyrgq@osed of WIOC( of
0.61, Fig. 4d). The weak correlation of water-s@@uBrC Absgswith POC was likely
due to the low-water solubility of primary orgarspecies, while the water-soluble
BrC Absgscorrelated moderately with WIOQ 6f 0.78, Fig. S4), likely indicating
similar sources for WSOC and WIOC. Nevertheless itiht absorption properties of
water-insoluble aerosol species remain to be edted

In addition, K ion is often used as a primary biomass burningssiom tracer
(Chow et al., 2007). Concentrations of this ionrelated much better with Ags
during summerr(of 0.87, Fig. 3b) than those during spring{ 0.56), fall ¢ of 0.46)
and winter  of 0.51). This finding suggests that besides seagndgources, biomass
burning can also contribute to the BrC evidenthsimmer. This is consistent with a
recent study (Wang et al., 2018), which also suggésat biomass burning was an
important source of BrC during summer in NanjindpeBg et al. (2013) also shows
that K" as a biomass burning tracer is reliable duringream

As is well known, levoglucosan §{B100s) is another common biomass burning
tracer compound (Simoneit, 2002; Simoneit et &99). Correspondingly, £1,0,"
and GHsO," ions are electron impact ionization fragmentsesbplucosan and they

are often used as biomass burning OA marker ionthenAMS spectral analyses
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(Alfarra et al., 2007; Ge et al., 2012). Therefones investigated the correlations
between BrC Abss with these two AMS ions. Their concentrations weaéculated
based on their corresponding mass fractional dmutians in the WSOM AMS
spectra and the WSOM mass concentrations derived éguation (4). As shown in
Fig. 5, the BrC Abgs overall showed good correlations with boteH@O," (r of
0.83~0.97) and §s0," (r of 0.73~0.95). Somewhat different from the corielzs
with K*, this result indicates the possible influencediomass burning on the BrC
light absorption throughout the year. But stillytsuer samples correlated the best
with CH4O," (r of 0.97) and HsO," (r of 0.95) among four seasons, again
suggesting a more obvious influence during sumtman during other seasons from
biomass burning. Note the good correlations witbniass burning tracer species
indicate that biomass burning can contribute toBh€, but does not mean it is the

dominant contributor.

3.3 Influences of bulk chemical properties

To further unravel the features of water-solubl€ Br Nanjing, we examined the
dependence of seasonal behaviors of;&tmm the bulk properties of WSOM. We first
plotted the Abgs as a function of the average oxidation states.,(@&fined as
2x0/C-H/C) (Kroll et al., 2011) of WSOM for diffemé seasons in Figs. 6a-d.
Although there are large uncertainties, statidijcile Absess values presented an

increasing trend with QSor spring, summer and fall samples, while theaswo
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clear positive correlation between Absand OSfor winter samples. Similar features
were observed for Abg versus O/C ratios too in Fig. S5. Consistently light
absorption (Abgs) tended to decrease with the increase of H/C duspring,
summer and fall, but the trend was less clear-cming winter as well (Fig. S6).
These plots suggest that more BrC were producédgber OS.. It should be noted
that, previous studies report that the optical proes of atmospheric BrC species can
be altered significantly during atmospheric ageing, the ageing processes may lead
to photo-enhancement (Bones et al., 2010; Updyka.e2012) or photo-bleaching
(Lee et al., 2014; Liu et al., 2016; Sumlin et aD17; Zhao et al., 2015), dependent
upon the types of precursors and reaction conditi&s OSis a metric of the ageing
extent, the unique behavior of winter samples Vikeflects that the dominant ageing
processes or the precursors to form BrC in winterdifferent from those in other
seasons in Nanjing. Of course, QBerely represents the average properties of BrC,
future molecular characterization of BrC would bssential to under the ageing
processes and their impacts on BrC light absorptiatetails. In addition, the Absg
correlated very well with SOC (Fig. 4e) while therrelation with OSc was not so
tight. This is because Q®%as for WSOA while SOC was for bulk OC, and SCselit
may not perfectly with OSc as well, due to that S®@n assemble of species from
multiple oxidation processes and precursors.

To further investigate the BrC absorption efficiese we plotted MAEss against

OSc in Figs. 6e-h. Generally, we observed no pesdependences of MAk on OS
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during spring, summer and fall, indicating that thbsorption efficiency” of WSOM
did not change obviously with chemical aging durihg three seasons. On the other
hand, the MAEssof winter WSOM presented a decreasing trend with, Gsowing
that aging may lead to photo-bleaching of WSOM inter.

As recent studies (e.g., Budisulistiorini et aD17) report that nitrogen (N)- or
sulfur-containing organic compounds are possibl€ Bhromophores. Here, we
investigated Absgsas well as MARgsagainst N/C ratios during four seasons in Fig. 7
(we did not calculate ARg; versus S/C ratios, as S/C ratios were very smallreisy
in this work). Except a few outliers in summer diatl, generally speaking, both
Abssss and MAEsgs values seemed to positively respond to the inerea$N/C ratios
during all time. This result manifests that N-camitag organics are effective BrC
light-absorbing chromophores in Nanjing. Nitroartim@ompounds were identified
as important BrC compounds previously in biomassiing emissions (Cao et al.,
2017; Lin et al., 2016). Note we indeed observedoNtaining ion fragments with a
benzene ring in the AMS spectra, suggesting thstexte of nitroaromatics in our
PM, s samples even though in a very low level. Therefoesults in Fig. 7 likely
verifies the possible contribution of biomass bognto BrC as well. Of course, a
majority of the N-containing organic fragments e tAMS spectra are smatiz ions
without a benzene ring, which are likely from othgres of organic nitrogen species,
including amines, amino acids, amides etc (Ge.eR@ll1a, b). Whether or not these

species are effective chromophores, their souroemations and contributions to
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light absorption, are yet to be carefully investéghin the future.

3.4 Potential source areas

The potential source contributions (PSC) from défé geological locations to
the water-soluble BrC Als were illustrated in Fig. 8. We also conducted llaek
trajectory analyses and presented the resultsgs. B and 10 for the four seasons.
Winter air masses can be classified into four elsstwhile three clusters were
identified for other seasons. There were signifigandifferent source area
contributions among four seasons to thesAds

During spring, the BrC potential source areas nyaidtributed in the southwest
and southeast of Nanjing, consistent with the elustnalyses of air mass back
trajectories shown in Fig. 9a. The average valliéshezss from Cluster 1 and Cluster
2 were much higher than that of Cluster 3 (Fig.)1@uster 1 (46.3% of total
trajectories) had a relatively short length, inggrting the local/regional emissions in
the Yangtze River Delta (YRD) region. Cluster 2 .(38) originated from Hunan
province and travelled across Anhui province, whiohld also play an important role
in affecting the absorbability of BrC in Nanjing gpring. Cluster 3 (15.6%) started
from Liaoning province, and passed through Boha, S&handong Peninsula and
Huanghai Sea, which delivered relatively cleanand had less influences on BrC. In
addition, the PSC distributions of Ajgswere also similar to those of SOC (Fig. S7a)

but not to POC (Fig. S8a) and KFig. S9a), supporting that secondary source was a
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435 dominant contributor of BrC during spring.

436 During summer, the BrC potential source areas mdodated in southeast of
437  Nanjing (<100 km), confined within a relatively skngegion in Jiangsu and Anhui
438 Provinces (Fig. 8b). Correspondingly, the air massere also dominated by Cluster
439 1 (60%) with very short length (Fig. 9b). It shoddd noted that, the PSC hotspots of
440 SOC (Fig. S7b), POC (Fig. S8b) and (kig. S9b) also appeared in the southeast near
441  Nanjing, indicating the important contributionsritdooth primary (biomass burning)
442  and secondary sources. Cluster 3 (17.8%) passedgtinthe North China Plain (NCP)
443 and the corresponding BrC seemed to be the mdstdigsorptive among the three
444 clusters. Cluster 2 (22.2%) originated from Huamndb@a and bring about less BrC
445  compounds. In addition, maps of the fire spots mn@ during 2015 summer were
446  presented in Fig. S10a-c. Obviously, lots of fimnts were found in the regions
447  overlapping with trajectories of Cluster 1 and @us3, proving the biomass burning
448  influences on BrC during summer. Such burning &a along with these clusters
449  likely include crop burning during harvest seasons.

450 In fall, local Nanjing and Anhui Province were idiéied as the most potential
451 source areas, as shown in Fig. 8c. CorresponditigdyBrC in Cluster 3 from such
452  areas apparently had a higher light absorptivigntthose in the other clusters (Fig.
453 10c), although it was not dominant (31.1%, lessntd®.3% of cluster 2 from
454  Huanghai Sea) (Fig. 9c). Also, the AgsPSC distributions were highly similar to

455 SOC (Fig. S7c) rather than POC (Fig. S8c) and(Kig. S9c) indicating a more
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significant role of secondary source to BrC durfizidy

For the case of winter, the potential source armeamly located close to the
sampling site (Fig. 8d). Correspondingly, the daaminair mass trajectory (Cluster 1
52.56%) was also the shortest. Hotspots of SOC &al), POC (Fig. S8d) and K
(Fig. S9d) were all concentrated in a narrow regah demonstrating that overall
local emissions might be major sources of thesecispeand BrC. Such local
emissions may also include enhanced residentiahifgir (such as cookstove
emissions) during winter. However, on average,Bhe with large light absorptivity
was not from Cluster 1, but from Cluster 2 (10.26%3 Cluster 4 (15.38%), which
passed through NCP and southern China, respeciivgly10d). This was also likely
associated with BrC from biomass burning, and frrihspection indeed found lots
of fire events in these regions during Februarg.(810f). While during the other two
months, biomass burning unlikely played importamdles but more likely

contributions from secondary and aged local emnsswere important.

4. Conclusions

This work investigated the light absorption projgest and sources of
water-soluble BrC in atmospheric fine particledexted from 4 May 2015 to 4 May
2016 in Nanjing. We also conducted chemical analygeOC, EC, WSOC, K and
SP-AMS analyses on the water-soluble organics. lidgtg absorption and mass

absorption efficiency at 365 nm were found to béhk&ironger during winter than
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during other seasons. The AAE values were in agaig.74~7.28 with an annual
average of 6.89. The BrC light absorption at 365 (Ans;ss) correlated very well

with SOC during all seasons, indicating a significaontribution from secondary
sources. We also investigated the correlation beEtwebsessand the biomass burning
marker K and levoglucosan (using its AMS fragments), anghébthat t biomass
burning could contribute to BrC as well, but movéently in summer.

The Abses generally positively responded to the increas©8fduring spring,
summer and fall, indicating more BrC at higher O®/hile the dependences of
MAE365 against OSc were less clear-cut during thiesse seasons, MAE365 during
winter displayed an decreasing trend against Q@plying chemical aging may lead
to photo-bleaching of BrC in winter. Furthermore/erall positive correlations of
Absses and MABsgswith N/C ratios were found throughout the year, gagiing that
nitrogen-containing organics are important BrC amophores in Nanjing. PSCF
analyses further showed the different source reggiorBrC during different seasons,
and in particular, pointed out that biomass burnmborth China Plain or sometimes
southern China could have more impacts on BrC dusammer and winter
(especially February in this work). Overall, ouady provides valuable insights into
BrC in densely populated regions. Future investgat are strongly needed,
including investigation of light absorption propest of water-insoluble species,
guantification of the contributions from primarydasecondary sources to BrC, and

the molecular characterization of possible BrC ofophores, etc.
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Figure 8. The potential source contributions to BrC Adasduring (a) spring (b)

summer (c) fall and (d) winter (colored by the PS@kies).
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880 Figure 9. Clusters of the86-h back trajectories during (a) spring (b) sumiagrfall

881 and (d) winter.
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882
883 Figure 10. The average Alss values of the different clusters during (a) spr{by

884 summer (c) fall and (d) winter.
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Light absorption properties of one-year aerosol samples in Nanjing were characterized.

BrC light absorption is stronger during winter in Nanjing

BrC is closely associated with secondary organic species

BrC is influenced by biomass burning, especially in summer.

Nitrogen-containing organic compounds are likely BrC chromophores in Nanjing



