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Pre-industrial era con. (ppbv):

Present con. (ppbv):

Annual inrease (%/yr-1):

Life time (yr):

Specific GWP (100 yr):
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N2O: a long-lived greenhouse  
gas in troposphere

Source: IPCC, 2007



Net radiative forcing of N2O (since 1750): 0.16 w m-2

(~ 6% of long-lived GHG’s radiative forcing )

Warming effect of N2O 

Source: IPCC, 2007



N2O -induced O3 depletion 
in stratasphere

Photolysis-induced 
O3 destruction in 

stratasphere

N2O
source



N2O release: the primary anthrop.
emission of O3-depletion matter

Actual Projected
Source: Ravishankara et al. (2009, Science)

N2O



Unit: Tg N yr -1 Anthrop.
Source 17.7 6.7 (38%)
Sink 12.6
Increase 5.1
Natural sources
Ocean 21%
Soils under natural 
vegetation

37%

Atmospheric chemistry 3%

Global budget & contributions 
of individual sources (%)

Anthropogenic sources
Agriculture 16%
Aquatic ecosystem 10%
Combustion & 
industrial processes

4%

Biomass and bio-
fuel burning

4%

Atmospheric 
deposition

3%

Human exctreta 1%

Source: IPCC, 2001,2007

12 %



Uncertainty of estimates for N2O emission 
of different source categories

Sources
Natural soils 
Agriculture
Aquatic ecosys.
(Rivers, estuaries, coastal zones)
Other anthrop. 
sources

Mean (Uncert.)
6.6 (-50 ~ 47%)
2.8 (-39 ~ 71%)
1.7 (-71 ~ 59%)

2.2 (-64 ~ 127%)

Tg N yr-1

Range
3.3 ~ 9.7 
1.7 ~ 4.8
0.5 ~ 2.7

0.8 ~ 5.0

Source: IPCC, 2007



 How to reduce the uncertainties?
 How to mitigate the anthrop. emissions?

• Process study 
• Field study
• Model simulation 

& upscaling

Key questions

Accurate 
quantification



Microbial nitrification

• Autotrophic 
nitrifiers

• Heterotrophic 
nitrifiers
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Microbial denitrification

0+1+2+3+5

NO2
-NO3

- NO N2N2O

ReductionOxidation
Nitrogen oxidation states

Denitrifiers: heterotrophic



-3

-1

0

+1

+2

+3

+5

Reduction

Oxidation

NH3

NH2OH

NOH

NO2
-

NO3
-

NO

N2O

N2

Microbial 
nitrification
Microbial 
denitrification

ANAMOX

DNRA

Chemo-
denitrification

Microbial DNRA & ANAMOX



-3

-1

0

+1

+2

+3

+5

Reduction

Oxidation

NH3

NH2OH

NOH

NO2
-

NO3
-

NO

N2O

N2

Microbial 
nitrification
Microbial 
denitrification

ANAMOX

DNRA

Chemo-
denitrification

Non-microbial process



Processes producing N2O in soil/water

Measured N2O from a soil may result from multiple processes

NO2
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To know the importance of individual 
processes in overall soil/water N2O emission: 
nitrification, denitrification, nitrifiers denitrification, 
dissimilatory nitrate reduction to ammonium (DNRA), 
anaerobic ammonium oxidation (ANAMOX), chemo-
denitrification

To understand the effects of key factors on N2O 
production in individual processes: microbes, 
substrates, environmental conditions (temperature, moisture, 
soil properties)

To quantify the ratios of N2O production rate 
to rates of nitrogen turnover processes (e.g. 
denitrification or gross nitrification) 

Needs of process study



Molecular biology techniques: to detect and count
functional microbes responsible for individual processes of
N2O production in soil/water.

 Isotopic signature techniques: to quantify contribution
of nitrification and denitrification, using site preference and
isotopologue enrichment factors

 15N pool dilution techniques: to measure gross
nitrification rate, ammonization rate, and NH4

+ and NO3
-

immobilization

Gas-flow-soil-core/C2H2/O2 inhibition techniques: to
measure denitrification/nitrification and its production
ratios

Techniques for process study 



Molecular biology techniques
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聚合酶链式反应

（PCR amplification）
DNA或RNA提取

（DNA/RNA extraction）

定量聚合酶链式反应
（Real-time PCR）

末端限制性片段多态性分
析（T-RFLP analysis）

系统发育分析

（Phylogenetic analysis）
宏基因组学

（Metagenomics）

Molecular biology techniques



Isotopic signature techniques

SP = δ15Nα - δ15Nβ
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15N pool dilution techniques

Source: Klaus Butterbach-Bahl

Gross ammonization rate
Δ NH4

+ between t = 0 and 40 h

NH4
+ immobilized by microbes

Gross nitrification rate
Δ NO3

- between t = 0 and 40 h

NO3
- immobilized by microbes
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×
C2H2 / O2 inhibition techniques

10 Pa C2H2
21% O2

Nitrification               ×  ×
Denitrification            × ×
Nitrifier  × × ×

denitrification 
Other processes           

Control     10 Pa C2H2 21% O2

not inhibited 
× inhibited

Denitrification rates (10% C2H2):
Separation of N2O production processes (C2H2 and O2):

NO3
-  NO2

-  NO  N2O  N2

(1) (2) (3) (4)

(3) - (4): nitrification
(2) - (4): denitrification
(1) - (2)  - (3) + (4): nitrifier denitrification
(4): other processes

Source: e.g. Wrage et al., 2004



Gas-flow-soil-core technique

accuracy 
(μmol mol-1)

detection limit      
(μg N h-1 kg-1 ds) (μg N m-2 h-1)

N2 0.2 0.23 8.6
N2O 5×10-3 0.02 0.6
NO 1×10-3 0.08 2.7

N2 leakage: 

<0.6ugN h-1 kg-1 ds

Source: Wang et al., 2011, EST



Gas-flow-soil-core technique

Initial nitrate concentration (mg N kg-1 ds)
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Denitrification potential measurement

Daily measurements of NH4
+, NO3

-, NO2
-, DOC, and microbial 

carbon and nitrogen during incubation are necessary to link 
laboratory study with field N2O flux and its model simulation.    

Source: Wang et al., 2012, Plant Soil
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Techniques for measuring field N2O fluxes

Static chamber technique

Eddy covariance technique

Overall N2O fluxes, which 
integrate emissions of multiple 
processes occurring in field 
conditions



Static chamber-based field measurement

Automatic translucent chamber Manual opaque/translucent chamber

Daily/weeklySub-daily

 Gas chromatography-electron capture detector (GC-ECD) 
is usually used to analyze (online or offline) air samples 
from chamber (automatic, manual) headspace.

 Researchers start recently to use laser/FTIR detectors.



Static chamber-based field measurement

F

F = (dC/dt)V/A

Static chamber technique

F: field N2O flux
dC/dt: initial change rate of N2O 

concentration during enclosure
V: headspace volume
A: measured land area

Nonlinear relationship
occurs between N2O 
concentration and 
sampling time, as 
chamber enclosure 

a) reduces concentration 
gradient (∂C/∂z), and 

b)prevents air mass flow 
driven by wind. 



Chamber-based measurement: Con.  flux

Source: Kroon et al., 2008, NCA;  Valente et al., 1995, JGR; Wang et al., 2012, AFM

QCL 
signal

Linear model:
dC/dt = a
Ct = a·t + b 

(used almost for all available dataset)

Nonlinear model:
F = (dC/dt) · V/A · ρN2O · P/P0 · T0/T
dC/dt = a - b · C0

Ct = a/b + (C0 - a/b) · e -b·t

(seldom used, yet)

F = (dC/dt) · V/A · ρN2O · P/P0 · T0/T



Chamber-based measurement: flux bias

Flux bias: using of wrong model and failure in 
nonlinearity detection could underestimate annual 
N2O fluxes by 0~ 30% (for a fertilized cotton case).

Linear model has to be used since too fewer concentration 
measurements (≤ 4 times) prevent use of nonlinear model. 

Linear model has to be used in case 
nonlinearity detection fails (offline 
concentration analysis or usage of GC, as a 
slow-response detector, prevent high-
frequency concentration measurements 
during enclosure; usually using only 5 
observations to detect nonlinearity in GC-
based measurement).

Result from chamber dataSource: Wang et al., 2012, AFM



Chamber-based measurement: flux bias

AC: automatic chamber fluxes (nonlinear model was used for 
detected nonlinearity cases)

EC: eddy covariance (TDL) fluxes with wind from chamber location

AC < EC by 17 ~ 20

Source: Wang et al., 2012, AFM

Result from comparison 
between chamber and EC 
data



Chamber-based measurement: flux bias

Carrier gas:
Argon-methane mixture (5-10% CH4 in Ar) is better to 

be used as carrier (AM method);
If Ar-CH4 mixture is substitute with N2 alone (DN

method), ascarite (which may lead to negative flux for 
marginal emission) is not recommended to use as filter 
of CO2 (DN-Ascarite method). Instead, we recommend 
to let 10% CO2 in pure N2 flow through ECD cell at ~2 
ml min-1 as a buffer gas (DN-CO2 method).

Flux bias due to wrong GC method

Source: Zheng et al., 2008, Plant Soil; Wang et al., 2010, AAS 
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Chamber-based measurement: flux bias

缓冲气添加系统

Gas-flow system in GCs for simultaneous analysis of 
N2O, CH4 and CO2, using DN-CO2 for N2O

Adding 10% CO2

Precision of 
each gas: 0.2 ~ 
0.7% for 
ambient air 
samples.

> 90% of GCs 
in China using 
this method.

Source: Wang et al., 2010, AAS 



Source: Zheng et al., 2008, Plant Soil

Correction 
term for 

DN-
measured 
N2O fluxes

Chamber-based measurement: flux bias

Flux bias due to wrong GC method



Chamber-based measurement: flux bias

Fixed frequency Annual flux 
bias（%）

Once every 3 d -19 ± 10
Once every 4 d -23 ± 15

-24 ± 12
-30 ± 18
-30 ± 13

Most field measurements

(relative to six 6 measurements d-1)

Source: Zheng et al., 2004

Once every 5 d
Once every 7 d
Once every 10 d

Case study of a rice-wheat 
rotation ecosystem

0
5

10
15
20
25
30
35
40
45
50

208 298 23 113 203 293 18 108 198 288 13 103

2001 2002 2003 2004

Daily N2O fluxes

Frequency-related 
biases are variable 
with ecosystems



Chamber-based measurement: advantages

a)  High sensitive: detection limit could be 1 ~ 11
(mean: 4.6) μg N m-2 h-1 for 50 cm chamber height 
(95% confidence interval), being more sensitive than 
other approaches by 1-2 order of magnitude.  

b) Flexible applicability: applicable for all field plot 
sizes of uniform or non-uniform land surface. 

c) Very practical: simple principle, easy operation, and 
low cost.     

Source: Wang et al., 2012, AFM 



a) Negative bias: due to failure in nonlinearity 
detection and prevent of mass flow.  

b) Low temporal resolution (manual) and poor 
representativeness for spatial variability
(automatic).  

c) Very labor-consuming. 

Chamber-based measurement: disadvantages

Source: Wang et al., 2012, AFM 



Chamber-based measurement: avoiding bias

a) Using AM or DN-CO2 if GC has to be adopted.

b) Enlarging sample size of concentration measurements 

during chamber enclosure.

c) Using high-precision, fast-response detectors for 

online concentration analysis. 

d) Using flexible measurement schedule: daily 

measurement for a few days to a few weeks following 

flux-stimulating events (e.g., fertilization, irrigation, 

rainfall, …), but weekly otherwise.  



行业（农业）科研专项项目（首席邱建军）的大部分站点
中科院先导（碳）专项项目（首席蔡祖聪）和 973项目（首席郑循华）的所有站点

制定并采用了
统一的测定方
法与数据质控
规范，为过程
规律与模型研
究提供具有可
比性的高质量
通量数据
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观测网数据质量控制: 中科院大气所数据质控人员
及时收集和处理各站点气体通量数据，诊断存在问
题，提出问题解决方案，并负责或协助解决。

海北严重退化
高寒草甸的通
量数据的有效
率（n = 300）：

CH4 97%

N2O  65%

箱高：40 cm;采样时间：80′;  GC精度：0.2% ~ 0.8%



Eddy covariance measurement of N2O fluxes

Cloth-path 
N2O detector

30′ average flux: F = ρc′ · w′
Gas 
inlet 

(N2O)
N2O density 
fluctuation

Vertical wind 
velocity 

fluctuation

Requiring fast response sensors (10 - 20 Hz) to simultaneously measure N2O 
concentration (TDL, QCL or LGR) and vertical wind velocity, and large uniform 

land surface (10 - 30 ha) to meet similarity theory for turbulence
Source: Wang et al., 2012, AFM 



Eddy covariance measurement of N2O fluxes

a) Coordinate rotation for two-dimension wind velocity;
b) Detrending vertical wind velocity & N2O concentration;      
c) Correcting lag time between N2O concentration & wind velocity;
d) Correcting flux loss at high-frequency. 
e) Using friction velocity (u*) filter to reject fluxes from area 

beyond footprint of the EC mast.  

Corrections and quality control to determine 30-min fluxes:

Co-spectra for 
simultaneous 

sensible heat flux

High frequency loss

Co-spectra for positive 
N2O flux during high-

emission period

N2O concentration

Source: Wang et al., 2012, AFM 



Eddy covariance measurement of N2O fluxes

N2O flux detection limit of eddy covariance technique (TDL): 
36 ~ 108 μg N m-2 h-1 (95% confidence interval).
Versus chamber: 1 ~ 11 μg N m-2 h-1
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Hourly N2O fluxes Comparable 
period

Hourly flux uncertainty: ±676 and ±569 μg N m-2 h-1 during the 
high and low emission periods, respectively (95% confidence interval).  

Applicability of eddy covariance technique is still questionable 
for low to moderate levels of N2O fluxes.

Versus chamber: -62 ~ 15 (high) & -6 ~ 3 (low) μg N m-2 h-1

Source: Wang et al., 2012, AFM



Eddy covariance measurement of N2O fluxes

Advantages: 
a) Good representativeness of spatial variability for the 

area within footprint fetch.  
b) Easy operation in situ & labor-saving. 

Disadvantages:
a) Low sensitivity, yielding not reliable fluxes from low 

emission sources.
b) Not applicable for manipulation field experiment with 

small plots & non-uniform land surface. 
c) Complexity in principles and data processing 
d) Expensive detectors.     

Promising application: 1) long-term observation; and, 2) 
developing correction factors for chamber flux biases

Source: Wang et al., 2012, AFM 



Modeling approach: scaling up and scenario study

Field measurements: never sufficient in 
terms of N2O emisison management; 
Process-oriented modeling approach: 

necessary way to link process 
understandings at molecular/microsite 
scales, field measurements at site scale, 
and management decision at regional 
scale.



DNDC (US)
Daycent (US)
PaSim (EU)

WNMM (Australia)
Landscape DNDC (EU)
……

Process-oriented modeling approach
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Models are designed to describe the nitrogen/carbon 
cycling processes from site to regional/catchment scale, 
so as to predict management effects of given scenarios. 
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Modeling approach: scaling up and scenario study

Process studies
- parametrisation of N2O production processes

- identification of the dominating microbial process
- correlation of microbial parameters with N2O fluxes

Field measurements
- Soil-atmosphere exchange N2O 

-at various sites
- Effects of regulating factors and key 

disturbances on N-emissions

Upscaling 
&

Modeling

Source: Klaus Butterbach-Bahl  



Modeling approach: scaling up and scenario study

Challenges 
1) Long-term (replicated years) flux validation of multiple 

carbon- and nitrogen-gases including N2O, NH3, NO, 
CO2 and CH4 with multiple field treatments of site scale: 
no successful case so far.

2) Simultaneous simulation of multiple gas emissions, 
hydrology and productivity at catchment scale: model 
development is undergoing, e.g. Landscape DNDC, 
WNMM.

3) Available measurement dataset for model test, calibration, 
and validation in terms of simultaneously measured 
variables and/or parameters: not sufficient.



Modeling approach: scaling up and scenario study

Close cooperation of experimental and model
scientists are strongly required to integrate the
studies from site, ecosystem to catchment scales !



Modeling approach: scaling up and scenario study

Slope runoff（SCS curve）:

Erosion（MUSLE）:

N retention and runoff in stream:

(Deng et al., 2011, JGR; 2011, Biogeosciences)

DNDC-SCS-MULSE model application



流域氮损失 ( kg N yr-1  )
N2O NO N2 TN NH3

旱作地 27.0 4.5 7.5 525 1350
水旱轮作田 4.5 0.8 29.5 48 93
冬水田 0.2 0.2 5.9 31 34
草地 0.2 0.1 0.2 5 2
林地 2.2 0.0 8.8 121 0
居民区 174
总量 34 6 52 904 1479

土地类型 41% fertilizer 
nitrogen lost from 
the catchment by 
NH3 emission and 
leaching or run-off

N leaching/runoff

Catchment 
(35 ha)

DEM N2O emission

DNDC-SCS-MULSE model application

N lossesLand types
Dry cropland
Rice-based rotation
Winter-flooded paddy
Grassland
Forest
Residence area
Total

Modeling approach: scaling up and scenario study

Source: Deng et al, 2011, JGR; Deng et al., 2011, Biogeosciences
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Thank you for your attention!


