

陆地生态系统N₂O排放研究方法

郑循华

中国科学院大气物理研究所(IAP-CAS)

2012.12.27, 南京信息工程大学

- Atmospheric N₂O & its effects
- Global budget & uncertainties
- **Key questions**
- Process study
- Field measurement

Research methodologies

➢ Model simulation _

N₂O: a long-lived greenhouse gas in troposphere

	N ₂ O	CH ₄	CO ₂
Pre-industrial era con. (ppbv):	~ 275	~700	~280000
Present con. (ppbv):	319	1774	379000
Annual inrease (%/yr ⁻¹):	0.25	0.6	0.4
Life time (yr):	114	12	50-200
Specific GWP (100 yr):	298	25	1

Source: IPCC, 2007

Warming effect of N₂O

Net radiative forcing of N_2O (since 1750): 0.16 w m⁻² (~ 6% of long-lived GHG's radiative forcing)

Source: IPCC, 2007

N₂O -induced O₃ depletion in stratasphere

N₂O release: the primary anthrop. emission of O₃-depletion matter

Source: Ravishankara et al. (2009, Science)

Global budget & contributions of individual sources (%)

Unit: Tg N yr ⁻¹ Anthrop		hrop.	Anthropogenic sourc	es		
Source	17.7	6.7 ((38%)	Agriculture	16%	
Sink	12.6			Aquatic ecosystem	10%	
Sink12.0Increase5.1		Combustion & industrial processes	4%			
Natural sourcesOcean21%		21%	Biomass and bio- fuel burning	4%	12 %	
Soils under natural vegetation		37%	Atmospheric deposition	3%		
Atmospheric chemistry		3%	Human exctreta	1%		

Source: IPCC, 2001,2007

Uncertainty of estimates for N₂O emission of different source categories

	Tg N yr ⁻¹	
Sources	Range	Mean (Uncert.)
Natural soils	3.3 ~ 9.7	6.6 (-50 ~ 47%)
Agriculture	1.7 ~ 4.8	2.8 (-39 ~ 71%)
Aquatic ecosys.	$0.5 \sim 2.7$	1.7 (-71 ~ 59%)
(Rivers, estuaries, coastal	zones)	
Other anthrop.	0.8 ~ 5.0	2.2 (-64 ~ 127%)
sources		

Source: IPCC, 2007

Key questions

> How to reduce the uncertainties? > How to mitigate the anthrop. emissions?

Accurate quantification

- **Process study**
- Field study
 Model simulation & upscaling

Microbial nitrification

- Autotrophic nitrifiers
- Heterotrophic nitrifiers

Microbial denitrification

Denitrifiers: heterotrophic

Microbial DNRA & ANAMOX

Non-microbial process

Processes producing N₂O in soil/water

Measured N₂O from a soil may result from multiple processes

Needs of process study

- To know the importance of individual processes in overall soil/water N₂O emission: nitrification, denitrification, nitrifiers denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anaerobic ammonium oxidation (ANAMOX), chemodenitrification
- To understand the effects of key factors on N₂O production in individual processes: microbes, substrates, environmental conditions (temperature, moisture, soil properties)
- To quantify the ratios of N₂O production rate to rates of nitrogen turnover processes (e.g. denitrification or gross nitrification)

Techniques for process study

- Molecular biology techniques: to detect and count functional microbes responsible for individual processes of N₂O production in soil/water.
- Isotopic signature techniques: to quantify contribution of nitrification and denitrification, using site preference and isotopologue enrichment factors
- ¹⁵N pool dilution techniques: to measure gross nitrification rate, ammonization rate, and NH₄⁺ and NO₃⁻ immobilization
- Gas-flow-soil-core/C₂H₂/O₂ inhibition techniques: to measure denitrification/nitrification and its production ratios

Molecular biology techniques

Isotopic signature techniques

¹⁵N pool dilution techniques

Source: Klaus Butterbach-Bahl

C_2H_2/O_2 inhibition techniques

> Denitrification rates (10% C_2H_2): $NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O × N_2$ > Separation of N₂O production processes (C₂H₂ and O₂):

Treat	Control	10 Pa C ₂ H ₂	21% O ₂	10 Pa C₂H₂
Processes	(1)	(2)	(3)	21% O ₂ (4)
Nitrification	\checkmark	×	\checkmark	×
Denitrification	\checkmark	\checkmark	×	×
Nitrifier	\checkmark	×	×	×
denitrification Other processes	✓	\checkmark	✓	\checkmark

(3) - (4): nitrification
(2) - (4): denitrification
(1) - (2) - (3) + (4): nitrifier denitrification
(4): other processes

✓ not inhibited × inhibited

Source: e.g. Wrage et al., 2004

Gas-flow-soil-core technique

	accuracy	detection limit	
	(µmol mol ⁻¹)	(µg N h ⁻¹ kg ⁻¹ ds)	(µg N m ⁻² h ⁻¹)
N ₂	0.2	0.23	8.6
$N_2 0$	5×10-3	0.02	0.6
NO	1×10 ⁻³	0.08	2.7

Source: Wang et al., 2011, EST

Gas-flow-soil-core technique

Denitrification potential measurement

Daily measurements of NH₄⁺, NO₃⁻, NO₂⁻, DOC, and microbial carbon and nitrogen during incubation are necessary to link laboratory study with field N₂O flux and its model simulation.

Source: Wang et al., 2012, Plant Soil

Techniques for measuring field N₂O fluxes

Static chamber-based field measurement

Automatic translucent chamber

Manual opaque/translucent chamber

- Gas chromatography-electron capture detector (GC-ECD) is usually used to analyze (online or offline) air samples from chamber (automatic, manual) headspace.
- > Researchers start recently to use laser/FTIR detectors.

Static chamber-based field measurement

Static chamber technique

 $\mathbf{F} = (\mathbf{d}\mathbf{C}/\mathbf{d}\mathbf{t})\mathbf{V}/\mathbf{A}$

F: field N₂O flux

dC/dt: initial change rate of N₂O concentration during enclosure

- V: headspace volume
- A: measured land area

Nonlinear relationship occurs between N₂O concentration and sampling time, as chamber enclosure

- a) reduces concentration gradient (∂C/∂z), and
- b) prevents air mass flow driven by wind.

Chamber-based measurement: Con. → flux

$$F = (dC/dt) \cdot V/A \cdot \rho_{N2O} \cdot P/P_0 \cdot T_0/T$$

Linear model: dC/dt = a $C_t = a \cdot t + b$ (used almost for all available dataset)

Nonlinear model: $F = (dC/dt) \cdot V/A \cdot \rho_{N20} \cdot P/P_0 \cdot T_0/T$ $dC/dt = a - b \cdot C_0$ $C_t = a/b + (C_0 - a/b) \cdot e^{-b.t}$ (seldom used, yet)

Source: Kroon et al., 2008, NCA; Valente et al., 1995, JGR; Wang et al., 2012, AFM

Linear model has to be used in case nonlinearity detection fails (offline concentration analysis or usage of GC, as a slow-response detector, prevent highfrequency concentration measurements during enclosure; usually using only 5 observations to detect nonlinearity in GCbased measurement).

- ► Linear model has to be used since too fewer concentration measurements (≤ 4 times) prevent use of nonlinear model.
- Flux bias: using of wrong model and failure in nonlinearity detection could underestimate annual N₂O fluxes by 0~ 30% (for a fertilized cotton case).

Source: Wang et al., 2012, AFM

AC: automatic chamber fluxes (nonlinear model was used for detected nonlinearity cases)

EC: eddy covariance (TDL) fluxes with wind from chamber location

Source: Wang et al., 2012, AFM

Flux bias due to wrong GC method

Carrier gas:

- Argon-methane mixture (5-10% CH₄ in Ar) is better to be used as carrier (AM method);
- If Ar-CH₄ mixture is substitute with N₂ alone (DN method), ascarite (which may lead to negative flux for marginal emission) is not recommended to use as filter of CO₂ (DN-Ascarite method). Instead, we recommend to let 10% CO₂ in pure N₂ flow through ECD cell at ~2 ml min⁻¹ as a buffer gas (DN-CO₂ method).

Flux bias due to wrong GC method

3	+	N_2	\rightarrow	β'	+	N_2^+	+	e

 $N_2O+e \rightarrow N_2+O^-$

$$\beta + CO_2 \rightarrow \beta' + CO_2^+ + e$$

N_2	15.6 ^a
Ar	15.8 ^a
He	24.6 ^b
CO_2	13.6 ^c
N_2O	12.9 ^c
NH_3	10.2 ^d
H_2O	12.6 ^e
H_2S	10.4 ^f
O_2	12.1 ^g
CH_4	12.5 ^{a, g}
NO	9.3 ^h
CS_2	10.1 ⁱ
COS	11.2 ^j

Source: Zheng et al., 2008, Plant Soil

Flux bias due to wrong GC method

Gas-flow system in GCs for simultaneous analysis of N₂O, CH₄ and CO₂, using DN-CO₂ for N₂O

Source: Wang et al., 2010, AAS

Flux bias due to wrong GC method

bias (%)

 -19 ± 10

 -23 ± 15

 -24 ± 12

 -30 ± 18

Case study of a rice-wheat rotation ecosystem

(relative to six 6 measurements d⁻¹)

Fixed frequency

Once every 3 d Once every 4 d

Once every 5 d

Once every 7 d

Once every 10 d -30 ± 13

> Most field measurements

Frequency-related biases are variable with ecosystems

Source: Zheng et al., 2004

Chamber-based measurement: advantages

- a) High sensitive: detection limit could be 1 ~ 11 (mean: 4.6) μg N m⁻² h⁻¹ for 50 cm chamber height (95% confidence interval), being more sensitive than other approaches by 1-2 order of magnitude.
- b) **Flexible applicability:** applicable for all field plot sizes of uniform or non-uniform land surface.
- c) **Very practical:** simple principle, easy operation, and low cost.

Chamber-based measurement: disadvantages

- a) **Negative bias:** due to failure in nonlinearity detection and prevent of mass flow.
- b) Low temporal resolution (manual) and poor representativeness for spatial variability (automatic).
- c) Very labor-consuming.

Source: Wang et al., 2012, AFM

Chamber-based measurement: avoiding bias

- a) Using AM or DN-CO₂ if GC has to be adopted.
- b) **Enlarging sample size** of concentration measurements during chamber enclosure.
- c) Using high-precision, fast-response detectors for online concentration analysis.
- d) Using flexible measurement schedule: daily
 measurement for a few days to a few weeks following
 flux-stimulating events (e.g., fertilization, irrigation,
 rainfall, ...), but weekly otherwise.

中国陆地CH4和N2O排放通量箱法观测网

制定并采用了 统一的测定方 法与数据质控 规范, 为过程 规律与模型研 究提供具有可 比性的高质量 通量数据

行业(农业)科研专项项目(首席邱建军)的大部分站点 中科院先导(碳)专项项目(首席蔡祖聪)和973项目(首席郑循华)的所有站点 ▶观测网数据质量控制:中科院大气所数据质控人员 及时收集和处理各站点气体通量数据,诊断存在问题,提出问题解决方案,并负责或协助解决。

海北严重退化 高寒草甸的通 量数据的有效 率 (n=300): CH₄ 97% N₂O 65%

箱高: 40 cm;采样时间: 80′; GC精度: 0.2%~0.8%

Gas

inlet

30' average flux: 🔽 🗕 🖉

Vertical wind velocity fluctuation N₂O density

Cloth-path N₂O detector

Requiring fast response sensors (10 - 20 Hz) to simultaneously measure N₂O concentration (TDL, QCL or LGR) and vertical wind velocity, and large uniform land surface (10 - 30 ha) to meet similarity theory for turbulence

Source: Wang et al., 2012, AFM

fluctuation

Corrections and **quality control** to determine 30-min fluxes:

- a) Coordinate rotation for two-dimension wind velocity;
- **b)** Detrending vertical wind velocity & N_2O concentration;
- c) Correcting lag time between N_2O concentration & wind velocity;
- d) Correcting **flux loss** at high-frequency.
- e) Using **friction velocity (u*) filter** to reject fluxes from area beyond footprint of the EC mast.

Source: Wang et al., 2012, AFM

- N₂O flux detection limit of eddy covariance technique (TDL):
 36 ~ 108 μg N m⁻² h⁻¹ (95% confidence interval).
 Versus chamber: 1 ~ 11 μg N m⁻² h⁻¹
- Hourly flux uncertainty: ±676 and ±569 μg N m⁻² h⁻¹ during the high and low emission periods, respectively (95% confidence interval).
 Versus chamber: -62 ~ 15 (high) & -6 ~ 3 (low) μg N m⁻² h⁻¹

Applicability of eddy covariance technique is still questionable for low to moderate levels of N₂O fluxes.

Source: Wang et al., 2012, AFM

> Advantages:

- a) Good representativeness of spatial variability for the area within footprint fetch.
- b) Easy operation in situ & labor-saving.

≻Disadvantages:

- a) Low sensitivity, yielding not reliable fluxes from low emission sources.
- b) Not applicable for manipulation field experiment with small plots & non-uniform land surface.
- c) Complexity in principles and data processing
- d) Expensive detectors.
- Promising application: 1) long-term observation; and, 2) developing correction factors for chamber flux biases

Field measurements: never sufficient in terms of N_2O emisison management; Process-oriented modeling approach: necessary way to link process understandings at molecular/microsite scales, field measurements at site scale, and management decision at regional scale.

Process-oriented modeling approach

Models are designed to describe the nitrogen/carbon cycling processes from site to regional/catchment scale, so as to predict management effects of given scenarios.

DNDC9.5 模型 (一维过程)

Source: Klaus Butterbach-Bahl

Challenges

- 1) Long-term (replicated years) flux validation of multiple carbon- and nitrogen-gases including N_2O , NH_3 , NO, CO_2 and CH_4 with multiple field treatments of site scale: no successful case so far.
- 2) Simultaneous simulation of multiple gas emissions, hydrology and productivity at catchment scale: model development is undergoing, e.g. Landscape DNDC, WNMM.
- 3) Available measurement dataset for model test, calibration, and validation in terms of simultaneously measured variables and/or parameters: not sufficient.

Close cooperation of experimental and model scientists are strongly required to integrate the studies from site, ecosystem to catchment scales !

DNDC-SCS-MULSE model application

Slope runoff (SCS curve) :

$$Q_{surf} = \frac{(R_{day} - I_a)^2}{(R_{day} - I_a + S)} \qquad S = 25.4 \left(\frac{1000}{CN} - 10\right)$$

Erosion (MUSLE) :

 $sed = 11.8 \cdot \left(Q_{surf} \cdot q_{peak} \cdot area_{hru} \right)^{0.56} \cdot K_{USLE} \cdot C_{USLE} \cdot P_{USLE} \cdot LS_{USLE} \cdot CFRG$

N retention and runoff in stream:

$$orgN_{surf} = 0.001 \cdot conc_{orgN} \cdot \frac{sed}{area_{hru}} \cdot \varepsilon_{N:sed}$$

(Deng et al., 2011, JGR; 2011, Biogeosciences)

DNDC-SCS-MULSE model application

I and types	N loss	es	(kg N	yr ⁻¹)	
Land types	N_2O	NO	N_2	TN	\mathbf{NH}_{3}	
Dry cropland	27.0	4.5	7.5	525	1350	
Rice-based rotation	4.5	0.8	29.5	48	93	
Winter-flooded paddy	0.2	0.2	5.9	31	34	
Grassland	0.2	0.1	0.2	5	2	
Forest	2.2	0.0	8.8	121	0	
Residence area				174		
Total	34	6	52	904	1479	

41% fertilizer nitrogen lost from the catchment by NH₃ emission and leaching or run-off

Source: Deng et al, 2011, JGR; Deng et al., 2011, Biogeosciences

Thank you for your attention!

LAPC, Institute of Atmospheric Physics Chinese Academy of Sciences