

Campbell Scientific Flux Systems: Design Rationales and Performance Advantages

NUIST, China, 26 April 2014

Ryan Campbell

- Introduction to Micrometeorology and Flux Measurements
- Eddy Covariance
- Storage
- Advection

Impetus: Better understand energy equilibrium and nutrient cycles and how humans are effecting these cycles

We make measurements to help determine:

• Do we have all the CO₂ sources and sinks in the carbon cycle correctly identified and quantified and are they changing?

Size of these sources/sinks and processes that govern them still have many unknowns.

Measurement results have already illuminated our understanding of carbon cycle science:

- Fossil Fuel Burning
- Land Use Change
- Climate Change
 - Drought
 - Fires
 - Pine Beetles
- Ozone decreases NEP in trees and crops

What are common methods to measure flux?

- Chambers
- Micrometeorological Methods
 - Bowen Ratio
 - Gradient
 - Atmospheric Profile (e.g., AP200)
 - Mass Balance
 - Eddy Covariance
 - Open-Path and Closed-Path
 - Tower and Airborne
- Remote Sensing (i.e., satellite)

- So what method should be used to measure CO2 flux? IT DEPENDS!
- As CO2 is exchanged between the surface and atmosphere, it can either accumulate/be in deficit (storage) or be transported (advection and turbulence). Different methods are better suited to measure storage, advective transport, or turbulent transport.

Turbulent Transport

<u>Turbulence</u> is quasi-chaotic motion of <u>swirling parcels</u> of air called eddies. Caused by surface forcings (solar heating, wind shears from frictional drag, and turbulent wakes from obstacles and uneven terrain).

If surface forcings are insufficient, flow will be laminar.

Turbulence is orders of magnitude more efficient at mixing than diffusion. (Stull, 1988)

Eddy Covariance

Under unstable conditions, most of the flux is transported by turbulence and can be measured using eddy covariance (EC).

Correlation exists between vertical motions and atmospheric properties

Example: CO₂ Flux at a Photosynthetically-Active Surface Boundary Layer

Eddy Covariance Measurement Principals

If turbulence is treated as a set of fluctuations about a mean value, which is called Reynolds Averaging, then the value of any variable at a given time is the sum of a temporal mean (defined over some suitable time period) plus an instantaneous deviation:

Turbulence (cont'd)

$$F_c = \overline{w'c'}$$

What about horizontal turbulent fluxes???

We purposely select a site where we assume a horizontally homogeneous equilibrium layer, which implies (Finnigan, 2003):

Horizontal concentration gradients are negligible

Net horizontal flux is zero

Measured vertical turbulent flux is representative of the total turbulent flux of the footprint area

Eddies come and w and c vary at a spectrum of frequencies.

We must measure w and c often enough to capture the variance of the high frequencies (e.g. 10Hz).

10Hz sampling may include aliasing; however, aliasing is fine so long as there are enough samples to capture the amplitude of the variance of the high frequencies.

The 10Hz covariances are averaged over a long enough period to capture the signal from low frequencies (e.g., 30 min).

What is the footprint area or fetch?

Because the wind is displacing or moving molecules, the sensors effectively "see" the vertical flux from an area upwind of the tower. This area is called the footprint or fetch.

The footprint depends on: Measurement height Surface roughness ABL stability

Flux Spatial Contribution for Various ABL Stabilities

Fetch / Footprint

The local surface layer grows at a rate of approximately 1 vertical meter per 100 horizontal meters.

The fetch should be homogenous and flat, and no abrupt changes in vegetation height should exist (Tanner, 1988)

Sensors height

The position of the EC instruments is restricted from the bottom and from the top

From the top: by the available upwind fetch of the area of interest

From the bottom: by the frequency response errors and corrections

Sensors located too high will cover an area larger than the area of interest

Sensors located above the boundary layer will catch the signals of flows unaffected by the land surface

Sensors located too low could pick up properties from the surface roughness sub layer and could average many small eddies

Q:How can we validate our EC system siting and setup?

A: Energy Balance, Spectral Analysis, Common Sense

With these sensors, the system can measure carbon dioxide flux, latent heat flux, sonic sensible heat flux, momentum flux, temperature, humidity, horizontal wind speed, and wind direction.

Why add energy balance sensors? To verify EC fluxes...

Latent Heat

$$LE = L w' \rho_v'$$

Sensible Heat $H = \rho c_p w'T'$

 ρ_v = water vapor density

L = latent heat of vaporization

 ρ = air density

 c_p = specific heat capacity of air

$Rn + LE + H + G \approx 0$

- Properly install sensors
- Properly calculate G and Rn, realized there can be a phase lag as well as storage in biomass
- Use common sense!

Check spectra for typical shapes

Vertical Wind Smoothed PSD

Evaluating Co-Power Spectral Density Plots

Spectral Analysis has some gotchas!

- Make sure EC100 bandwidth is set to half the datalogger scan rate! (Niquist Frequency)
- Except during spectral analysis, we recommend a default 20Hz bandwidth, especially at low measurement heights to capture all fluxes.
- A sample rate of 10Hz is fine even with 20Hz bandwidth because aliasing is okay since we've filtered out the high frequency noise above 20Hz.

Spectral Analysis Example

Synthesized Time Series with -5/3 Power Law

Downsampling will preserve high frequency fluxes through aliasing.

Aside: What is aliasing?

Example: Discrete-Time Sampled Signal

Original Signal(?)

Or This?

Statistical Descriptions of Aliased Signals

Even if siting is very good, corrections should be used.

Correction name	Affected fluxes	Effect	Correction range in %
Spike removal	all	increase or decrease flux	0-15
Frequency response corrections	all	increase flux	5-20
Coordinate rotation	all	increase or decrease flux	0-10
Webb-Pearman-Leuning correction	H ₂ O, CO ₂ , CH ₄	increase or decrease flux	0-50
Sonic temperature correction	Н	increase or decrease	0-10
Oxygen correction	H ₂ O	increase or decrease flux	0-10
Time delay	mostly for closed path	increase	5-15
In summary, for eddy covariance:

- 1. The fetch/footprint is horizontally homogeneous
- 2. The site is turbulent (measurements made inside the constant flux layer or lower portion of ABL)
- 3. There is no vertical movement of mass of the dry air over a suitable interval of time (mean vertical wind should be zero).
- 4. Measurements are made frequent enough to capture the variance of high frequency fluxes, and averaging periods are long enough to capture variance of low frequencies.
- 5. The sensors have been sited appropriately
- 6. The setup can be validated through energy balance, spectral analysis, and common sense.

7. Corrections are applied for final flux results. (Our program applies some corrections to give a real-time estimate.)

Storage and Advection

- Consider a control volume with a source/sink of a substance X.
- X can either accumulate/be absorbed (storage) or be transported in/out (advection and turbulence)

change in storage = Σ (Flux in) – Σ (Flux out)

Think about mass balance.

 $NEE = Storage + Transport_{Adv} + Transport_{Turb}$

How significant is the storage term?
 Depends on BL stability

 If we integrate over the control volume, we can mathematically describe the net ecosystem exchange of X as:

As discussed already, if we assume a horizontally homogeneous equilibrium layer, we can imply (Finnigan et al., 2003):

- Horizontal gradients are negligible
- Horizontal integration unnecessary
- Measured mixing ratios and turbulent fluxes are representative of the whole volume

Our equation becomes:

 As conditions become stable, the EC sensors don't "see" the flux.

Blue Curve = Actual CO2 Flux, Black Curve = EC measured fluxes

Q: The red area and green area are equal. Does this mean over a 24-hr period EC fluxes will give us accurate net flux?

- A: Yes, in an ideal world, but in the real world, nighttime conditions may lead to:
 - Stratification that decouples surface and measurement system(s)
 - Growing footprint (perhaps into non-homogenous areas)
 - Horizontal gradients develop and advection becomes significant (especially nighttime flows)
 - Non-stationary conditions (sudden changes in concentration and velocity, e.g. nocturnal jets)

Advection is impractical to measure, so it is usually assumed negligible above u* threshold, and is estimated below u* threshold.

Evidence of Advection

Aubinet et al., 2012

• We can filter data using a friction velocity threshold. Typical thresholds are 0.1 – 0.5 m/s, but should be determined experimentally.

Recall that
$$u_* = \left(\overline{u'w'}^2 + \overline{v'w'}^2\right)^{\frac{1}{4}}$$

Yellow Dots – Theoretical NEE Blue Dots – Measured NEE (ECflux + storage) x is u_{*} threshold.

More on u* filtering

- However, u* filtering to some standard value may not work. "Know thy site".
- For sites with significant canopy, even high u* can have a significant storage term.
- "Any site with slope and a canopy needs profile measurements" Ray Leuning, 2013 AsiaFlux Workshop.

Intake Heights

- What heights should intakes be at?
 - Grasses & short crops
 - At least 4 intakes
 - Bottom intake within canopy
 - Remaining intakes are equidistant
 - Forests

- Two intakes above canopy (top one in well mixed layer below EC sensors)
- One intake at mean canopy height (region of highest LAI)
- Rest of intakes should capture ecologically significant strata

Munger et al., 2012

Looking at the real world... An example site from Ray Leuning.

- Measurement Principles
 - Sonic Anemometry
 - NDIR Gas Analysis
- Design Rationales for EC sensors
- Timeline of Micromet Systems at CSI
- Summary of Performance Advantages

NDIR Measurement Principles Sun and Earth Radiation

Sun and Earth Radiation with CO₂ Atmospheric Absorption

CO2 Asymmetric Stretch:

Non-Dispersive Infrared (IRGA) Gas Analyzer

Principle of Operation – Closed Path EC 155

Instrumentation requirements:

Preserve vertical wind and scalar correlation

 Spatial Synchronicity (i.e. co-location)
 Temporal Synchronicity

Spatial Synchronicity

- Sensor separation creates temporal asynchronicity
 t = d/r = d/u
- Sensor separation causes loss of spatial coherence Errors change with wind angle of attack
- Moving sensors closer together can be tricky Flow distortion on Sonic Anemometer: Mean errors and turbulence errors Thus, aerodynamics very important!!!

Evolution of Campbell Colocated Design.

Temporal Synchronicity

Flux vs. Covariance Cutoff Frequency (60 Hz Samples)

Flux vs. Measurement Synchronicity (60 Hz Samples)

Instrumentation requirements:

- High Precision
- Adequate frequency response

When requirements are not met, corrections must be applied to fluxes. The goal is to minimize corrections to minimize uncertainty.

Q: What limits frequency response in a sonic anemometer or gas analyzer?

A: Frequency-Response Limitations:

- Path (and volume) averaging
- Non-instantaneous measurements
- Signal-processing filters
- Other (e.g. thermometer time constants)
- Closed-path gas analyzer unique issues

Vertical Path Averaging Frequency Response Improves with Wind Speed

Vertical Path Averaging

A: Frequency-Response Limitations:

- Path (and volume) averaging
- Non-instantaneous measurements
- Signal-processing filters
- Other (e.g. thermometer time constants)
- Closed-path gas analyzer unique issues

A: Frequency-Response Limitations:

- Path (and volume) averaging
- Non-instantaneous measurements
- Signal-processing filters
- Other (e.g. thermometer time constants)
- Closed-path gas analyzer unique issues

The detector is initially oversampled, so a filter is used to reduce to a reasonable dataset that preserves spectral covariance but attenuates noise.

Some types of filters:

- Moving Average (low-pass filter)
- Down-sample (decimation)
- Block average (decimated moving average)
- Custom filter

Amplitude Frequency Response of Moving Averages

w and $T_{\rm s}$ with Attenuated Response - 60 Hz

What will applying a moving average filter do to a dataset?

Synthesized Time Series with -5/3 Power Law

Show dataset in frequency domain (spectrum)

PSD of Synthesized Time Series with -5/3 Power Law

Moving Average and Spectra

Result of 50-msec Moving Average

Amplitude Frequency Response of Block Average Normalized by -5/3 Power Law

Block Average and Spectra Next: Down Sample to 20 Hz – Alias above 10 Hz

Downsampled Spectrum Alias above 10 Hz

Spectra with Custom Filter

Custom Filter Normalized by -5/3 Power Law

Measured Wind Data

[Ux_3a:ts_gas.dat] Start time=2010/06/20 14:00:00.000. mean=5.30142 std=1.579 m/s.

Spectra of Measured Data Filters Applied and Downsampled

Measured Spectra Spectra Normalized by -5/3 Power Function

Low Frequency Response

Frequency response is also an issue at the low end of the spectrum.

Low Frequency Response High-Pass Filter from Thirty-Minute Averaging Period

A: Frequency-Response Limitations:

- Path (and volume) averaging
- Non-instantaneous measurements
- Signal-processing filters
- Other (e.g. thermometer time constants)
- Closed-path gas analyzer unique issues

A: Frequency-Response Limitations:

- Path (and volume) averaging
- Non-instantaneous measurements
- Signal-processing filters
- Other (e.g. thermometer time constants)
- Closed-path gas analyzer unique issues

Other General Requirements

- Minimize disturbance (flow distortion, heat loading)
- Rugged
- Low Power
- Fairly Accurate

Q: Why is absolute accuracy less important than precision in EC measurements? Or a better question is why are offset errors okay but not gain errors?

Colocation

Flux Attenuation Ratio for Colocated and 20cm-separated Sensors for Various Stabilities Conditions Evolution of Campbell Colocated Design.

Single Electronics for both gas and wind measurements

Example EC System:

- Sample rate: 10 Hz
- Sample interval: Δt_s = 100 ms
- CSAT3 measurement delay: $2\Delta t_s = 200 \text{ ms}$
- LI7500 measurement delay: programmable

186 + n(6.5) = 296.5 ms, n = 17

EC System with EC100 Electronics:

- Fully integrated electronics for sonic anemometer and gas analyzer.
- Synchronized to better than 1 msec, essentially simultaneous.
- Fixed number of scans to synchronize other analog measurements.
- The same custom filtering on both gas and wind

Single electronics allows *simultaneous,* synchronized measurements

Low Power

<6W for EC150/CSAT3A or IRGASON (less than half of older open path systems) 12W for CPEC200

13W for AP200

Aerodynamic

- No support struts in measurement volume
- Path length to housing diameter ratio high
- Vertical symmetry
- Snouts extend optical path beyond BL of housing

Body-Heating Effects

- CO2 uptake was observed to be several hundred percent too high by open-path EC systems during winter (0.1 mg/m2/s)
- At mild temperatures, Hs was 14% higher than ambient, and was worse in cold temperatures.
- WPL corrections using Hs from a spatially separated anemometer led to 33% overestimation of CO2 uptake. Source: Burba et al., 2008.

Body Heating Effects

- Design Solutions:
 - Reduce heat from electronics
 - Place motor and detector behind sample volume
 - Place motor on top arm
 - Snouts extend beyond thermal boundary layer of housing
 - Aerodynamic design with no spars/struts (ratio of optical path to housing diameter increased)
 - Hs from a colocated instrument correctly applies WPL.

Sensible Heat Flux Comparison

Closed-Path Frequency Response

 Closed-Path requires some separation, but frequency response can be improved by design of tubing, sample cell, and flow rate

Closed-path Frequency Response

• Note under higher wind conditions, the open-path frequency response will be better than a closed-path.

- Closed-path frequency response does not change with wind speed.
- The open-path frequency response in this model is limited by path averaging.

Precipitation

- Open-path analyzers do not perform as well in precipitation. Design solutions:
 - Slanted windows
 - Hydrophobic coating
 - Wicks
 - Auto window heating
 - Calibration for partially blocked signal (e.g., snow)

More Robust Factory Calibration

- factory calibration (7 CO₂ concentrations, 3 pressures, 11 temperatures and 15 dew points in combinations encountered in practice, plus dirty window cal)
- field calibration (2 point calibration with zero air and span air)

Resistance to Solar Contamination

Other advantages:

- Flexibility of CS dataloggers (add sensors)
- Only sonic anemometer manufacturer to also produce gas analyzers → better system integration
- Temp fluctuations dampened on CPEC200, so a fine wire TC not required (they can be a pain)
- Turn-key closed-path system w/ auto zero/span
- Turn-key profile system w/ auto zero/span
- Expertise and experience (CSI's first EC system was a CA27 and TC in late 1970's!)

All Systems:

- Setup tower/tripod and mount enclosures

All Systems

- Ground enclosures to earth
- EC Systems
 - Mount crossarm

Open-Path EC Systems

 Connect gas analyzer, sonic anemometer, and temperature probe to EC100 electronics.

Open-Path EC Systems

- Connect power and SDM between logger and EC100.

Installed EC150/CSAT3A EC system

CPEC200 System – Mount EC155/CSAT3A

CPEC200 System

 Connect gas analyzer, sonic anemometer, and sample cell cables to EC100.

CPEC200 System

- Connect tubing connections.

CPEC200 System

Connect SDM and power between EC100 and system enclosure.

AP200 System (enclosure already mounted) – Mount Intakes

Design Rationale: Pre-programmed but user-editable for flexibility

© 2011 Campbell Scientific, Inc.

OPEC Program

• If OPEC program ordered (PN18442/3), it comes with compiled switches, wiring diagram, and description of outputs.

'CR3000 Series Datalog	ger			
'Copyright (c) 2002, 2	006, 2010 C	ampbell Scientific, Inc. Al	rights reserved.	
'3 Dec 12				
'version 3.1.01				
IStant of Constants Cu	stomisstion	Section		
The following second	scomizacion	Section .		
, .	are deasur			
Const SENSOR CSAT3	= FALSE	'CSAT3	three dimensional sonic anemom	eter (overrides the sonic in an IRGASON or EC150)
Const SENSOR EC150	= TRUE	'IRGASON or EC150 (CSAT3A)	open path infrared gas analyze	r (CO2 and H2O) and three dimensional sonic anemometer head
Const SENSOR KH20	= FALSE	'KH20	krvpton hvgrometer (H2O)	- ,
Const SENSOR FW	= FALSE	'FW05	finewire thermocouple probe	
Const SENSOR LI7500	= FALSE	'LI-7500(A)	open path infrared gas analyze	r (CO2 and H2O)
Const SENSOR LI7700	= FALSE	'LI-7700	open path methane gas analyzer	(CH4), requires EC150 or LI-7500
Const SENSOR TMPR_RH	= FALSE	'HC2S3/HMP155A/HMP45C	temperature and relative humid.	ity probe
Const SENSOR_Q7_1	= FALSE	'Q7.1	net radiometer	
Const SENSOR NR LITE	= FALSE	'NR Lite	net radiometer	
Const SENSOR CNR 2	= FALSE	'CNR 2	net radiometer	
Const SENSOR NR 01_CNR	1 = FALSE	'NR 01/CNR 1	net radiometer	
Const SENSOR_CNR_4	= FALSE	'CNR 4	net radiometer	
Const SENSOR TCAV	= FALSE	'TCAV	type E thermocouple averaging .	soil temperature probes
Const SENSOR CS616	= FALSE	'CS616	water content reflectometers (volumetric soil moisture)
Const SENSOR CS65X	= FALSE	'CS650 or CS655	water content reflectometers (volumetric soil moisture)
Const SENSOR HFT3	= FALSE	'HFT3	soil heat flux plates	
Const SENSOR HFP01	= FALSE	'HFP01	soil heat flux plates	
Const SENSOR_HFP01SC	= FALSE	'HFP01SC	soil heat flux plates	
'End of Constants Cust	omization S	ection		

OPEC Program

Wiring

Output Desc.

	CSAT3A	Hs	W/m^2	Sensible heat flux using sonic temperature
	(EC100)	tau	kg/(m s^2)	Momentum flux
'*** Beginning of FC150 w/ CSAT3A sonic head wiring ***		u_star	m/s	Friction velocity
SDM C1 SDM Data (groan)		Ts_stdev	С	Standard deviation of sonic temperature
SDM-CT SDM Data (green)		Ts_Ux_cov	C m/s	Covariance of sonic temperature and horizontal wind (x-axis)
'SDM-C2_SDM Clock (white)		Ts_Uy_cov	C m/s	Covariance of sonic temperature and horizontal wind (y-axis)
'SDM-C3 SDM Enable (brown)		Ts_Uz_cov	C m/s	Covariance of sonic temperature and vertical wind
'G SDM reference (black)		Ux_stdev	m/s	Standard deviation of horizontal wind (x-axis)
		Ux_Uy_cov	(m/s)^2	Covariance of horizontal winds (x-axis and y-axis)
SDM shield (clear)		Ux_Uz_cov	(m/s)^2	Covariance of horizontal wind (x-axis) and vertical wind
		Uy_stdev	m/s	Standard deviation of horizontal wind (y-axis)
'+12V power (red)		Uy_Uz_cov	(m/s)^2	Covariance of horizontal wind (y-axis) and vertical wind
		Uz_stdev	m/s	Standard deviation of vertical wind
G power reference (black)		wnd_spd	m/s	Horizontal wind speed
power shield (clear)		rslt_wnd_spd	m/s	Resultant horizontal wind speed
'*** End of EC150 /w CSAT3A sonic head wiring wiring ***		wnd_dir_sonic	degrees	Resultant wind direction using compass coordinate system
33		std_wnd_dir	degrees	Standard deviation of wind direction
		wnd_dir_compass	degrees	Resultant wind direction using the sonic's right handed coordinate system
		Ux_Avg	m/s	Average horizontal wind (x-axis)
'*** Beginning of HMP wiring ***		Uy_Avg	m/s	Average horizontal wind (y-axis)
'2H Temperature signal (vellow)		Uz_Avg	m/s	Average vertical wind
22 Signal reference (white)		Ts_Avg	С	Average sonic temperature
		sonic_azimuth	degrees	Azimuth of sonic negative x-axis
		sonic_samples_Tot	samples	Number of samples in the sonic statistics (fluxes, variances, means, etc.)
'3H Relative humidity signal (blue)		no_sonic_head_Tot	samples	Number of samples of "no sonic head"
'31 jumper wire to 21		no_new_sonic_data_Tot	samples	Number of samples of "no new sonic data"
		amp_I_f_Tot	samples	Number of "amplitude low" warnings from sonic head
gna Sniela (clear)		amp_h_f_Tot	samples	Number of "amplitude high" warnings from sonic head
		sig_lck_f_Tot	samples	Number of "poor signal lock" warnings from sonic head
'12V Power (red)		del_T_f_Tot	samples	Number of "delta temperature" warnings from sonic head
C Power reference (black)		aq_sig_f_Tot	samples	Number of samples of "sonic head acquiring ultra sonic signals"
G Fower relefence (black)		sonic_cal_err_f_Tot	samples	Number of "sonic calibration download failures"
End of HMP wiring ***	EC150	Fc_wpl	mg/(m^2 s)	Carbon dioxide flux
		LE_wpl	W/m^2	Latent heat flux
		Hc	W/m^2	Sensible heat calculated from humidity corrected sonic temperature
Itte Designing of ND Lite wining the		CO2_stdev	mg/m^3	Standard deviation of carbon dioxide density
Beginning of NR Lite winnig		CO2_Ux_cov	mg/(m^2 s)	Covariance of carbon dioxide density and horizontal wind (x-axis)
'2H Signal (white/red)		CO2_Uy_cov	mg/(m^2 s)	Covariance of carbon dioxide density and horizontal wind (y-axis)
'2L Signal reference (green/blue)		CO2_Uz_cov	mg/(m^2 s)	Covariance of carbon dioxide density and vertical wind
and short iumpor wire to 2		H2O_stdev	g/m^3	Standard deviation of water vapor density
		H2O_Ux_cov	g/(m^2 s)	Covariance of water vapor density and horizontal wind (x-axis)
Shield (clear)		H2O_Uy_cov	g/(m^2 s)	Covariance of water vapor density and horizontal wind (y-axis)
'*** End of NR Lite wiring ***		H2O_Uz_cov	g/(m^2 s)	Covariance of water vapor density and vertical wind
		Tc_stdev	С	Standard deviation of humidity corrected sonic temperature
		Tc_Ux_cov	C m/s	Covariance of humidity corrected sonic temperature and horizontal wind (x-axis)
		Tc_Uy_cov	C m/s	Covariance of humidity corrected sonic temperature and horizontal wind (y-axis)
		Tc_Uz_cov	C m/s	Covariance of humidity corrected sonic temperature and vertical wind
		CO2_mean	mg/m^3	Average carbon dioxide density
		H2O_mean	g/m^3	Average water vapor density
		amb tmpr Avg	С	Average ambient temperature

OPEC Program

- Outputs raw 10Hz data
- Outputs 30 min (adjustable) statistical data
 - Includes E balance sensors
 - Includes flux estimates
 - Filtered for diagnostics (despike)
 - Sonic temp corrected for humidity
 - WPL correction applied
 - Other corrections not applied yet because preference has been for post-processing

CPEC200 Program

- Base program included w/ system
- Similar raw and 30 min outputs as OPEC
- Flux Estimates
 - Filtered for diagnostics (despike)
 - Accounts for average delay between gas and wind
 - No need for WPL

Const VALVE_MODULE = True

- ' True to enable the CPEC200 Valve Module
- ' False to reduce clutter in Public table and output tables
- ' Default: True

Const SCRUB_MODULE = False

- ' True to enable the CPEC200 Scrub Module
- ' False to reduce clutter in Public table and output tables
- ' Default: False

Const SaveAll_diagnostics = False

- ' True to save all diagnostic data in ts_data outptut table
- ' False to reduce clutter in output tables
- ' Default: False

Const Leaf_Wetness_Sensor = False

- ' True to use the leaf wetness sensor to control the EC155 intake heater power
- ' False to use full power all the time

' Default: False

AP200 Program

- Program included w/ system
- Raw, Site average, and 30 min output tables

'Start of Constants Customization Section

'MaxLevels is the maximum number of profile levels. Normally this is 8, but it may be set to the actual number of levels used (4-8) to avoid null data for unused Levels in the IntAvg table Const MaxLevels = 8 'min=4 'max=8 'inc=1

'SaveAll_diagnostics: Normally this is False, but set it to TRUE to save all diagnostic data in RawData table Const SaveAll_diagnostics = False '(default) 'value=False '(default) 'value=True

'N_AirTemps: Number of 107-L temperature sensors to measure (may be 1 to 8), or zero to disable air temperature measurements Const N_AirTemps = 0 'min=0 'max=8 'inc=1

'End of Constants Customization Section

EC150 – Shetland Islands, Antarctica

Fluxes over Sugar Cane– Maui, USA

Complex Terrain Fluxes – China

Sea Fluxes with EC150 – China

Complex Terrain Fluxes – Korea

AP200 Profile System – Hawaii, USA

OPEC Maintenance

Replacing chemical bottles

CPEC200 Maintenance

Monitor diagnostics (data, LED's) Enclosure desiccant Replace filter Clean analyzer windows Zero/Span (if not automatic)

Troubleshooting ANY system

1. Visually inspect site, check connections/wiring, obstructions, etc.

2. Use manual to interpret diagnostic values. Look at raw data diagnostics for patterns or persistent states.

3. If no diagnostics, do a zero/span (analyzer) and zero wind test (sonic)

4. Contact an AE. Be prepared to send program, some raw data, serial numbers, OS version, status table information, applicable site history. (Photos are nice too!)

Data Collection

- 30 minute data may be transmitted practically by any normal method
- Collection or transfer of time series data(e.g. 10Hz data) may be limited to certain methods due to throughouput and/or cost.
- Even if online flux estimates are the only data of interest or the only data being collected via telemetry, time series data should be saved.

Time Series Data Transfer

Data is for a CR3000 running OS25 with a program that generates 15 IEEE4 values saved every 10Hz

Note duty cycle is dependent on cable lenths, network connections, transmission distance, etc. The below tests were done in good conditions.

Method	<u>Device</u>	Duty Cycle	Comments	
CF Card	NL115/CFM100	<3	Most reliable, not expensive, always recommended even if redundant	
RS-232	CR3000 to PC	7	Least expensive	
Short Haul/RS-485	-	7	Estimated to be similar to RS-232	
Radio	RF-450	50	Highly variable	
Ethernet (Internet)	NL115	34	Somewhat variable	
Ethernet (LAN)	NL115	6	Somewhat variable	
Wi-Fi	NL240	35	Serial server, ad-hoc	
Wi-Fi	NL240	64	Bridge mode, LAN	
Cellular	RavenXTG	28	LN server auto collects every half hour	
Cellular FTP	RavenXTG	10	2.3 hrs to send a daily ts 58MB file, use FTPClient()	
Cellular HTTP	RavenXTG	11	2.7 hrs to send a dialy ts 58MB file, initiated through web browser	

Note that cellular coverage and rates depends on location. For this test, coverage was good and the rate was \$60/mo for 5GB.

CSI Data Formats

Data on CF card is in TOB3 LoggerNet can collect as TOA5, TOB1, CSV Most post-processing requires TOB1 After collection, Card Convert can be used to change formats

File management with CardConvert

File Options Help	🔍 🖉 Destination File Options
Select Card Drive Change Dutput Dir Change Du	Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_27_00 Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_28_00 Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_28_00 Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_29_00 Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_31_00 Jocuments/CampbellSci Stuff/Eddy Covariance/Ec Training class/TRAINING 2009/Training Data/Ts_data_2006_07_31_00
Checking 6 data filesDonel File Formst: hinsy table data (TOB1) Record Numbers: not stored in files Timestangs: stored in files Filenames based on Date/Time Hemovernatis: diabled Filematis: diabled Cancel Current Convert entitie data file data file data file Convert entitie file data file data file Convert entitie file data file data file Example filenameTOB1_basefilename	Live Time Live Time Convert Only New Data Convert Only New Data
Delete Source Files	File Naming □ TimeD ate Filenames ✓ Use Day of Year □ Create New Filenames
	Append To Last File Time Settings
stimated Number of Records	Ok Cancel Options Help

Online Processing

Review of online processing the EC programs do:

Thirty minute statistics for the turbulence and meteorological variables, these include estimated fluxes, means, and standard deviations.

Estimated fluxes have removal of most spikes from diagnostic filtering and include corrections for sonic temperature (humidity), oxygen correction (KH20), time lag (CPEC200), and WPL (OPEC).

Common corrections that are not included as of now: coordinate rotation of wind, frequency correction (line averaging and spatial separation).

Off-line Processing

EdiRe

Free of charge software which can be downloaded from this website:

http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/Downloads.html

Author is Robert Clements

Off-line Processing - cont

Raw time series data are loaded into EdiRE or equivalent software, and then these corrections are most often applied:

- 1. Despike
- 2. Apply time delay (may include cross-correlation)
- Coordinate Rotation (double coord. Rotation per Tanner & Thurtell 1969 or Planar-Fit method per Wilczak et al 2001)
- 4. Frequency corrections (path averaging, spatial separation, tube attenuation).
- 5. Sonic temperature correction for humidity

Density correction (Webb, Pearman, Leuning, 1980)

Data Processing

Off-line Processing - cont

Planar Fit (coordinate rotation)

Coordinate System Rotated About This Plane