

耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

Discussion on: Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

Atmos. Chem. Phys., 11, 1313–1325, 2011 www.atmos-chem-phys.net/11/1313/2011/ doi:10.5194/acp-11-1313-2011 © Author(s) 2011. CC Attribution 3.0 License.



#### Anthropogenic imprints on nitrogen and oxygen isotopic composition of precipitation nitrate in a nitrogen-polluted city in southern China

Y. T. Fang<sup>1,2</sup>, K. Koba<sup>2</sup>, X. M. Wang<sup>3</sup>, D. Z. Wen<sup>1</sup>, J. Li<sup>1</sup>, Y. Takebayashi<sup>2</sup>, X. Y. Liu<sup>2</sup>, and M. Yoh<sup>2</sup>

<sup>1</sup>South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China

<sup>2</sup>Tokyo University of Agriculture and Technology, Tokyo 183 8509, Japan

<sup>3</sup>School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 501275, China

Reporter: Fang Yan 2017.10.20



#### Introduction

#### Methods

#### **•Results and Discussion**

#### **Conclusions**

#### > Introduction

- Global atmospheric emissions of nitrogen oxides (NOx, the sum of NO and NO2) have increased dramatically during the past 150 years.
- Once emitted to the atmosphere,  $NO_x$  is oxidized via several pathways to form highly soluble nitric acid (HNO<sub>3</sub>).
- The N stable isotopic composition of atmospheric deposition has often been viewed as reflecting NO<sub>x</sub> source.
- $\delta^{18}$ O of atmospheric is considered to be mostly related to oxidation pathways in the atmosphere.

#### > Introduction

•  $\delta^{18}$ O of atmospheric  $NO_3^-$  is considered to be mostly related to oxidation pathways in the atmosphere.

| $NO + O_3 \rightarrow NO_2 + O_2$             | (R1) |
|-----------------------------------------------|------|
| $NO_2 + hv \rightarrow NO + O$                | (R2) |
| $NO_2 + OH \rightarrow HNO_3$                 | (R3) |
| $NO_2 + O_3 \rightarrow NO_3 + O_2$           | (R4) |
| $NO_3 + NO_2 \leftrightarrow N_2O_5$          | (R5) |
| $N_2O_5 + H_2O_{(surface)} \rightarrow HNO_3$ | (R6) |



• Sampling

location: South China Botanical Garden of Guangzhou City

**Period:** Form 2008 to 2009

Samplers:For the 113 precipitation samples was collected with an open funnel (23 cm in diameter) that was connected to a 5 L sampling bottle with a black polypropylene tube.



• Water soluble inorganic ions(WSII):IC

• Iostopic:IRMS coupled with a gas chromatograph equipped with a PoraPLOT column ( $25m \times 0.32$  mm) and GC interfaceIII.

• Backward trajectories:HYSPLIT(72-hour,altitude of 500ma.g.l)

• Calculations and statistical analysis:Arithmetic and volume-weighted means,  $NO_3^-$ -flux-weighted mean ,Statistically significant differences were set at P<0.05.

#### > Methods

- The denitrifying bacterium, Pseudomonas aureofaciens, was used to convert 25 nmol of NO<sub>3</sub><sup>-</sup> into gaseous N<sub>2</sub>O in 20mL vials prior to isotope analysis.
- In our lab.



• Precipitation  $NO_3^-$  input

#### 1. $NO_3^-$ concentration ranged : 6 ~256 µmol L<sup>-1</sup>

|      |          | $NO_3^-$ con.     | $(\mu mol L^{-1})$ |               |                   | δ <sup>15</sup> N-N | O <sub>3</sub> <sup>-</sup> (‰) |
|------|----------|-------------------|--------------------|---------------|-------------------|---------------------|---------------------------------|
|      | Range    | Mean <sup>a</sup> | Mean <sup>D</sup>  | Range         | Mean <sup>a</sup> | Mean <sup>D</sup>   | Mean <sup>c</sup>               |
| 2008 | 6 to 406 | 63                | 53                 | -3.9 to +7.9  | +3.9              | +3.7                | +4.2                            |
| 2009 | 9 to 256 | 77                | 68                 | -4.9 to +10.1 | +3.3              | +3.0                | +3.5                            |

<sup>a</sup> arithmetic mean.

<sup>b</sup> volume-weighted mean.

<sup>c</sup> NO<sub>3</sub><sup>-</sup>-flux-weighted mean.

**Table.1**.Ranges of  $NO_3^-$  con.

#### 2.Isotope results were not anomalous



• Precipitation  $NO_3^-$  input

3.Mean  $NO_3^-$  concentration was higher during the cool season than warm season in 2008, but the reverse was true in 2009.

4.The annual  $NO_3^-$  input in precipitation : 16.0 and 18.5kg N ha<sup>-1</sup>. 74% and 80% falling in the warm season.

| Year | Season                  | n        | Precipitation<br>(mm) | N(<br>(kg N ha | $D_3^-$ input<br>$a^{-1}a^{-1}$ ) |         | $NO_3^-$ con.<br>(µmol L <sup>-1</sup> )               | δ <sup>15</sup> N-NO <sub>3</sub><br>(‰)                        |  |
|------|-------------------------|----------|-----------------------|----------------|-----------------------------------|---------|--------------------------------------------------------|-----------------------------------------------------------------|--|
| 2008 | Cool<br>Warm<br>P value | 9<br>50  | 491<br>1670           |                | 4.1<br>11.9                       | 8       | 89.9 (9 to 181, 19.6)<br>57.7 (6 to 406, 9.4)<br>0.18  | +4.5 (+0.3 to +7.5, 0.7)<br>+3.8 (-3.9 to +7.9, 0.3)<br>0.41    |  |
| 2009 | Cool<br>Warm<br>Pvalue  | 11<br>43 | 411<br>1520           |                | 3.7<br>14.8                       | 67<br>7 | 7.6 (19 to 181, 14.5)<br>78.8 (10 to 256, 9.1)<br>0.57 | +0.7 (-4.9 to +4.3, 0.9)<br>+4.1 (+0.5 to +10.1, 0.3)<br><0.001 |  |

**Table.2**.Seasonal comparison of  $NO_3^-$  con.and  $NO_3^-$  input

- Nitrogen deposition
- The total inorganic N input: 30.9 (2008) and 40.3 kg (2009) N ha<sup>-1</sup> a<sup>-1</sup>
- Compared with the small measured N deposition of  $1.8-3.2 \text{ kg N ha}^{-1}a^{-1}$  in some remote areas in China and  $0.9 \text{ kgNha}^{-1}a^{-1}$  in Hawaii.

• Such high bulk N deposition is mainly caused by increased human activities associated with industrialization and urbanization.

N isotopes of  $NO_3^-$ 

1.  $\delta^{15}$ N over the study period varied between -4.9‰ and +10.1‰.

2.Positive  $\delta^{15}N$  values were observed in 2008, but some negative values or near zero values were observed in the summer .

3. Annual mean values: +3.9‰(2008 )and +3.3‰ (2009).





|      |                |                   | $\delta^{15}$ N-N | $O_2^-$ (%)       |
|------|----------------|-------------------|-------------------|-------------------|
|      | Range          | Mean <sup>a</sup> | Mean <sup>b</sup> | Mean <sup>c</sup> |
| 2008 | -3.9 to $+7.9$ | +3.9              | +3.7              | +4.2              |
| 2009 | -4.9 to +10.1  | +3.3              | +3.0              | +3.5              |

**Table.3** Annual mean of  $\delta^{15}N$  -  $NO_3^-$ 

#### • N isotopes of $NO_3^-$

4.The seasonal difference between the warm and cool seasons was not significant in 2008. In 2009,  $\delta^{15}N$  of  $NO_3^-$  in the warm season was higher than that in the cool season.

5. There was also no significant difference in  $\delta^{15}N$  values between continental and marine sources.

| Year | Season          | n  | 1 | $\delta^{15}$ N-NO <sub>3</sub><br>(‰) |
|------|-----------------|----|---|----------------------------------------|
| 2008 | Cool            | 9  |   | +4.5 (+0.3 to +7.5, 0.7)               |
|      | Warm<br>P walue | 50 |   | +3.8(-3.9  to  +7.9, 0.3)              |
| 2009 | Cool            | 11 |   | +0.7(-4.9  to  +4.3, 0.9)              |
|      | Warm            | 43 |   | +4.1 (+0.5 to +10.1, 0.3)              |
|      | <i>P</i> value  |    |   | < 0.001                                |

Table.4 Seasonal comparison of concentration  $~\delta^{15}N$ 

| Year | Season      | n  | Pı |         | δ <sup>15</sup> N-NO <sub>3</sub><br>(‰) |   |
|------|-------------|----|----|---------|------------------------------------------|---|
| 2008 | Continental | 21 |    | +3.4    | (-3.9 to +7.4, 0.6)                      | - |
|      | Marine      | 38 |    | +4.2 (  | -1.1 to +7.9, 0.3)                       | - |
|      | Pvalue      |    |    |         | 0.22                                     |   |
| 2009 | Continental | 19 |    | +1.9 (  | -4.9 to +8.7, 0.7)                       | - |
|      | Marine      | 35 |    | +4.1 (+ | 1.1 to +10.1, 0.3)                       | - |
|      | P value     |    |    |         | 0.002                                    |   |

Table.5. Sources comparison of concentration  $\delta^{15}N$ 

• Seasonal pattern of N isotopes of  $NO_3^-$ 

• Seasonality has been commonly reported for isotopic composition of atmospheric,The seasonal pattern of  $\delta^{15}N$  seems to vary from site to site.

• In the present study,  $\delta^{15}$ N- $NO_3^-$  was correlated with temperature only in 2009.



Fig.3.  $\delta^{15}$ N- *NO*<sub>3</sub><sup>-</sup>vs. *NO*<sub>3</sub><sup>-</sup>con. and R<sup>2</sup> =0.24, P <0.001 in 2009.

• Seasonal pattern of N isotopes of  $NO_3^-$ 

- The δ<sup>15</sup>N values of precipitation NO<sub>3</sub><sup>-</sup> were higher in the summer than in other seasons in 2009.
- In 2009 monthly mean  $NO_2/NO_x$  and O3 concentration were lower in the summer than in the winter.



**Fig.4.** Seasonal changes in NO2 and O3 concentrations (a), monthly mean of three monitoring sites), molar ratios of  $NO_2/O_3$  and  $NO_2/NO_x$  (b) during the study course in Guangzhou City. The shaded areas denote the warm seasons from April to September

Seasonal pattern of N isotopes of  $NO_3^-$ 

In 2008, higher  $\delta^{15}$ N values the winter, although the seasonal pattern was not as distinct as in 2009.

| Year | Season         | n  | Precipitation | NO <sub>3</sub> input                  | $NO_3^-$ con.          | $\delta^{15}$ N-NO <sub>3</sub> | $\delta^{18}$ O-NO <sub>3</sub> |
|------|----------------|----|---------------|----------------------------------------|------------------------|---------------------------------|---------------------------------|
|      |                |    | (mm)          | $(\text{kg N ha}^{-1} \text{ a}^{-1})$ | $(\mu mol L^{-1})$     | (‰)                             | (‰)                             |
| 2008 | Cool           | 9  | 491           | 4.1                                    | 89.9 (9 to 181, 19.6)  | +4.5 (+0.3 to +7.5, 0.7)        | +73.2 (+53.3 to +81.2, 3.2)     |
|      | Warm           | 50 | 1670          | 11.9                                   | 57.7 (6 to 406, 9.4)   | +3.8 (-3.9 to +7.9, 0.3)        | +63.5 (+33.4 to +81.5, 1.4)     |
|      | P value        |    |               |                                        | 0.18                   | 0.41                            | 0.01                            |
| 2009 | Cool           | 11 | 411           | 3.7                                    | 67.6 (19 to 181, 14.5) | +0.7 (-4.9 to +4.3, 0.9)        | +73.0 (+59.3 to +84.4, 2.7)     |
|      | Warm           | 43 | 1520          | 14.8                                   | 78.8 (10 to 256, 9.1)  | +4.1 (+0.5 to +10.1, 0.3)       | +66.4 (+47.2 to +86.2, 1.5)     |
|      | <i>P</i> value |    |               |                                        | 0.57                   | < 0.001                         | 0.05                            |

The P values were obtained by one-way ANOVA performed for each study year. Range (minimum and maximum) and one standard error of mean are given in parentheses.

- Seasonal pattern of N isotopes of  $NO_3^-$
- The high values in coincidence with the high temperatures observed in 2009 might be caused by the high demand for fossil fuel because of the intense preparations for he 16th Asian (2010).

| Year | Season                  | n        | Precipitation<br>(mm) | $NO_3^-$ input<br>(kg N ha <sup>-1</sup> a <sup>-1</sup> ) | $NO_3^-$ con.<br>( $\mu$ mol L <sup>-1</sup> )          | $\delta^{15}$ N-NO <sub>3</sub><br>(‰)                          | $\delta^{18} \text{O-NO}_3^-$ (%)                                  |
|------|-------------------------|----------|-----------------------|------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|
| 2008 | Cool<br>Warm<br>P value | 9<br>50  | 491<br>1670           | 4.1<br>11.9                                                | 89.9 (9 to 181, 19.6)<br>57.7 (6 to 406, 9.4)           | +4.5 (+0.3 to +7.5, 0.7)<br>+3.8 (-3.9 to +7.9, 0.3)            | +73.2 (+53.3 to +81.2, 3.2)<br>+63.5 (+33.4 to +81.5, 1.4)         |
| 2009 | Cool<br>Warm<br>Pvalue  | 11<br>43 | 411<br>1520           | 3.7<br>14.8                                                | 67.6 (19 to 181, 14.5)<br>78.8 (10 to 256, 9.1)<br>0.57 | +0.7 (-4.9 to +4.3, 0.9)<br>+4.1 (+0.5 to +10.1, 0.3)<br><0.001 | +73.0 (+59.3 to +84.4, 2.7)<br>+66.4 (+47.2 to +86.2, 1.5)<br>0.05 |

The P values were obtained by one-way ANOVA performed for each study year. Range (minimum and maximum) and one standard error of mean are given in parentheses.

Seasonal pattern of N isotopes of  $NO_3^-$ 

The difference in seasonal pattern of  $\delta^{15}N$  of  $NO_3^-$  precipitation between 2008 and 2009 may have mainly resulted from two factors:

●1.different precipitation regime.There was a larger amount of precipitation in 2008 than in 2009.

•2. human activities. a.global financial crisis starting from 2007.

b.the intensive preparations for the 16th Asian Games.

- Partitioning of  $NO_x$  sources using N isotopes of  $NO_3^-$
- Assuming that the precipitation  $NO_3^-$  at has only two sources, anthropogenic and natural, Calculations show that on average 59% in 2008 and 55% in 2009 were from an anthropogenic source, may be an underestimation.
- First, the assumed  $\delta^{15}N_{anthropogenic}$  value be higher than the actual one.
- Second, the  $\delta^{15}N_{natural}$  value used in the estimation may be higher than the actual value.
- Thirdly, the  $\delta^{15}N$  signature of thermal NO\_x might have failed to be recorded by our precipitation samples

- Partitioning of NO<sub>x</sub> sources using N isotopes of  $NO_3^-$
- The  $\delta^{15}$ N values of fuel NO<sub>x</sub> have been reported to be much more positive than those from natural sources, the fuel NO<sub>x</sub> are generally more enriched in <sup>15</sup>N than the thermal NO<sub>x</sub>.



Fig.5.  $NO_3^-$  concentration vs.  $SO_4^{2-}$  concentration in precipitation collected in 2008 to 2009 in Guangzhou City. R2 =0.80, P <0.001 in 2008; R2 =0.77, P <0.001 in 2009.

• O isotopes of  $NO_3^-$ 

1.The  $\delta^{18}$ O values : +33.4 ~+86.2‰.

2. The  $\delta^{18}$ O annual mean values: +65.0‰ (2008) and +67.7‰ (2009).





Fig.6 Ranges and values of  $\delta^{18}O$ 

|      | Range          | Mean <sup>a</sup> | δ <sup>18</sup> O-N<br>Mean <sup>b</sup> | Mean <sup>c</sup> |
|------|----------------|-------------------|------------------------------------------|-------------------|
| 2008 | +33.4 to +81.5 | +65.0             | +64.9                                    | +71.8             |
| 2009 | +48.2 to +86.2 | +67.7             | +66.5                                    | +70.6             |

**Table.6** Annual mean of  $\delta^{18}$ O

• O isotopes of  $NO_3^-$ 

3. The seasonal pattern of  $\delta^{18}$ O of  $NO_3^-$  was clear, with values reaching a minimum in July or August.

4.The  $\delta^{18}$ O values of  $NO_3^-$  were significantly higher in the cool season than in the warm season.



**Fig.6** Ranges and values of  $\delta^{18}$ O

| Year | Season  | n  | δ <sup>18</sup> O-NO <sub>3</sub><br>(‰) |
|------|---------|----|------------------------------------------|
| 2008 | Cool    | 9  | +73.2 (+53.3 to +81.2, 3.2)              |
|      | Warm    | 50 | +63.5 (+33.4 to +81.5, 1.4)              |
|      | P value |    | 0.01                                     |
| 2009 | Cool    | 11 | +73.0 (+59.3 to +84.4, 2.7)              |
|      | Warm    | 43 | +66.4 (+47.2 to +86.2, 1.5)              |
|      | Pvalue  |    | 0.05                                     |

Table.7.Seasonal pattern of  $\delta^{18}$ O-*NO* $_3^-$ 

• O isotopes of  $NO_3^-$ 

The continental source precipitation had higher  $\delta^{18}O$  of than the marine source precipitation; the continental source precipitation mainly occurred in the cool season that had shorter daytime.



| Year | Season         | $\delta^{18}$ O-NO <sub>3</sub> <sup>-</sup> |
|------|----------------|----------------------------------------------|
|      |                | (‰)                                          |
| 2008 | Continental    | +71.6 (+51.8 to +81.5, 1.9)                  |
|      | Marine         | +61.3 (+33.4 to +79.5, 1.6)                  |
|      | <i>P</i> value | < 0.001                                      |
| 2009 | Continental    | +71.6 (+58.8 to +84.8, 1.9)                  |
|      | Marine         | +65.5 (+47.2 to +86.2, 1.7)                  |
|      | P value        | 0.06                                         |

**Table.8**. Sources comparison of  $\delta^{18}$ O concentration

Fig.7. 72-hour air mass backward trajectories in Guangzhou City Lines in blue occurring in the cool season, red in the warm season 22

- Oxygen isotopes of  $NO_3^-$
- $\delta^{18}$ O average of +66.3‰,fell in the low end of the reported range of the world.The relatively low  $\delta^{18}$ O values in our study suggest the importance of the OH radical pathway in forming atmospheric  $NO_3^-$ .

• The seasonality of these formation pathways is a function of both temperature ( $N_2O_5$  is thermally decomposed) and solar radiation (OH is photolytically produced).

- Oxygen isotopes of  $NO_3^-$
- 18 samples had  $\delta^{18}$ O values being lower than +55‰.After the correction of NO<sup>-</sup><sub>2</sub> interference, still find that 12 values being lower than the expected minimum.

• One possibility for the lower than usual  $\delta^{18}$ O values of  $NO_3^-$  is oxygen isotopic fractionation, which can induce large variations in  $\delta^{18}$ O values between the reactants and the products.

- Oxygen isotopes of  $NO_3^-$
- The other possible explanation is the reaction of NO with peroxy radicals , which can compete with  $O_3$  to convert NO into  $NO_2$

```
OH + CO + O_2 \rightarrow CO_2 + HO_2 \tag{R7}
```

```
HO_2 + NO \rightarrow NO_2 + OH (R8)
```

The  $\delta^{18}$ O of peroxy radicals is expected to be much lower than that of O3 as the O atoms should come from atmospheric O2

#### Conclusions

- 1. Positive nitrate  $\delta^{15}N$  values indicating the importance of NO<sub>x</sub> emissions from coal combustion. Different seasonal patterns of  $\delta^{15}N$ - $NO_3^-$  might reflect the global financial crisis and the intensive preparations for the 16th Asian Games.
- 2. The anthropogenic NO<sub>x</sub> source :59% (2008) and 55% (2009) of the total input may be an underestimation.
- 3.  $\delta^{18}$ O- $NO_3^-$  values :+33.4‰ +86.5‰ was lower than reported (the importance of OH radicals in the formation of atmospheric) 16% of  $\delta^{18}$ O values that were lower than the expected likely resulted from the reaction of NO with HO<sub>2</sub>.



耶鲁大学-南京信息工程大学大气环境中心 Yale-NUIST Center on Atmospheric Environment

# Thank you for listening!