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1.Introduction

The European heat wave of the summer of 2003 was an extreme
climatic anomaly: the mean summertime temperatures over much of
western and central Europe exceeded the 1961-1990 mean by up to 5
standard deviations, and the summer might have been the warmest
since 1540.

Excessive heat and/or lack of water resulted in lower yields of
grains, vegetables, fruits, and wines by between 4.6 and 10.8%, with
uninsured crop losses totaling about US$12.3 billion. In France alone,
officials estimated that wheat and corn harvests decreased by 15 and
28%, respectively, with losses totaling between US$1.1 and $4.4
billion.
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2.Datasets and Data processing
2.1. Satellite imagery
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2.2. Ancillary data

Daily records of precipitation, mean 2-m winds, and 2-m air
temperature (mean, maximum, and minimum) from Climate
Diagnostic Center archive of meteorological station records were used
to construct an air temperature time series for all of France and to
perform flux calculations at ASTER scale. A total of 126 stations in
France reported a continuous data record between April 2000 and
October 2004. Incoming radiation fluxes were obtained from the
NCEP/NCAR reanalysis 6-hourly data archive ,as were winds and air
temperature at 0 = 0.995 (approximately 40 m height).
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Figure 1. Dominant ecological zones of France — Mediterranean (dark gray) Western European Broadleaf Forests (medium gray),

southern temperate Atlantic (light gray), and Alps and Pyrenees highland zones (striped). The black box shows the footprint of the

ASTER image pair and stars are locations of Euroflux sites: Puechebon in the Mediterranean zone and Hesse Forest in the zone of
western European Broadleaf Forests. Ecozone map European Environmental Agency. Copenhagen, 2000
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Table II. Total area and average elevation of land-cover types within the three major ecozones and for all of France.
Area is in km® and elevation is meters

Land cover Mediterranean ~ W. Eur. Broadleaf Temperate Atlantic Alps All of France

Area Elevation Area Elevation Area Elevation Area Elevation Area Elevation

Crops 10273 381 69271 203 137981 110 1072 723 196412 186
Pastures 1280 633 45060 447 32011 116 985 1001 10663 327

Broadleaf and mixed 16300 581 47 6359 431 31429 142 2597 1022 103046 408
forests

Coniferous forests 3298 821 13256 728 14 466 83 3237 1454 43838 557
Orchards 8019 122 1479 258 4396 76 46 355 11729 124
Urban 1461 163 6062 204 11503 73 398 683 24613 164
Other 16776 646 16003 544 16790 111 9399 2075 87306 740
All 57408 504 198790 410 249475 111 17733 11630 537606 365
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311mpacts on the land surface: drought and prolonged heat
3.1.1 Vegetation

(A) (B)

(C) (D)

~0.4

Figure 2. 2003 NDVI anomaly (NDVI", unitless) caleulated from MODIS 16-day composites for (A) 23 April-8 May, (B) 10-25 June.
(Cy 12-27 July and (D)) 13-28 Auvgust. Ecological zones are outlined in gray: the ASTER footprint is indicated by the black box
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3.1.1 Vegetation
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Figure 3. The 2003 anomaly in 16-day MODIS NDVI (NDVI ), averaged for each
ecological zone. Time series of NDVI’ calculated from all pixels, plotted at the mid-date
of each composite period.
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3.1.1 Vegetation
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Figure 4. Spring and summer MODIS NDVI time series by ecological zone in France, 2000-2004. Data plotted at NDVI composite
mid-date. Interpolations between missing/corrupted data points in May and July, 2001 are marked by bars along the x-axis
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3.1.1 Vegetation

Figure 5. The 2003 MODIS
NDVI anomaly (NDVI ) time
series for dominant land-cover
types in (A) ATL, (B) WEB, and
(C) MED
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3.1.2 Surface temperature
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Figure 6. Spatial evolotion of the 2003 radiometric temperatwre anomaly based on 8-day MODIS composites for (A 15-22 April
(B 1017 Juns (C) 12-19 July (I3} 5-12 Auwpnst. Ecodogical zones are outlined in gray; the ASTER footprint is indicated by the black
have
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3.1.2 Surface temperature
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Figure 7. The 2003 temperature anomaly, plotted as 8-day averages for all of France from MODIS (Tg). from the NCEP/NCAR

reanalysis (T = 0.993) and from the average of 126 meteorological stations (T at 2 m). Inset: Regression of 8-day average 2-m

temperature versus MODIS 8-day radiometric surface temperature at the pixel containing the station. Data include all 8-day periods in
2000-2003 for which the mean temperature exceed 5°C. The linear fit is T = 1.105T,;, + 6.4947, R? = 0.65
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3.1.2 Surface temperature
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Figure 8. 2003 Radiometric temperature anomaly in each of the three dominant ecological zones. Points indicate the average value for
each 8-day composite MODIS image in each ecological zone. error bars indicate £ one standard deviation within each ecological zone
and lines are the 2-point running mean
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3.1.2 Surface temperature
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Figure 9. The influence of land cover on MODIS temperature anomaly. Points indicate the 2003 anomaly for each land use calculated
relative to the mean 2003 anomaly for France at that date. Lines are the 4-point running mean for 8-day MODIS composite images
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3.1.2 Surface temperature

It should be noted that 7 derived from MODIS composites represents
an average for clear-sky days over the composite period; as clear days
tend to be warmer than cloudy days, this may be an overestimate of the
actual average T;. According to the NECP/NCAR reanalysis, the
summer of 2003 was considerably less cloudy than other years in the
MODIS record for the study area. This suggests that the potential for
warm bias in the composite-based Ty 1s less in 2003 than 1n other years,
possibly introducing a conservative error to the calculation of
radiometric temperature enhancement during the heat wave.
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3.1.3 High-resolution analysis
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Figure 10. Level 2 ASTER products for a subset of the image footprint. (A), (B} Atmospherically corrected surface reflectances displayed

as 321-RGB false color composites for the (A) 1 Auvgust, 2000 and (B) 10 Auwgust, 2003 images. Vegetation appears red because of the

high reflectance in the near-IR (ASTER band 3). (C), (D) ASTER-derived kinematic surface temperature for the same (C) 2000 and

(1) 2003 scenes. Note the large contrast between agricultural lands and forest patches in the 2003 image. Scale bar indicates 500 m
and applies to all four images
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Table III. Values of remotely sensed variables and air temperature for the ASTER image pair. 1 August 2000 and
10 August 2003. Bracketed values indicate MODIS averages over the area of the ASTER scene. MODIS NDVI and Tg
are derived from single day images and MODIS albedo values are taken from 16-day white-sky albedo composites that

include the dates of the ASTER images

Land Cover Variable 2000 2003 Change
Scene average T, (C) 24 32 +8

NDVI 0.73 [0.73] 0.55 [0.50] —0.18 [-0.23]

Albedo 0.21 [0.18] 0.20 [0.19] —0.01 [+0.01]

T (°C) 32 [31] 47 [44] +15 [+13]
Forest |NDVI 0.87 0.87 0 |

Albedo 0.19 0.17 —0.02

Tr (°C) 29 40 +11
Villages NDVI 0.45 0.46 +0.01

Albedo 0.16 0.15 —0.01

[Te CC) 44 50 +6 |
Barren — barren cropland NDVI 0.27 0.29 +0.02

Albedo 0.24 0.22 —0.02

[ Tr CC) 47 58 +11]
Active crops and pastures | NDVI 0.81 0.46 —0.35 |

Albedo 0.21 0.22 +0.01

Tp °C) 31 51 +20
Active crops and pastures (no hedgerows) |NDW 0.81 0.43 —0.37 |

Albedo 0.22 0.22 0

T (°C) 30 54 +24

18



Yale HeXxF-mREEIEXFERSHEH D

Yale-NUIST Center on Atmospheric Environment

3.2.1 Surface energy budget

The average white-sky surface albedo derived from MODIS was
greatest for ATL throughout the period of analysis (0.18), intermediate
in WEB (0.17), and lowest in MED (0.15). Neither the spatial pattern
nor the absolute magnitude of albedo changed in 2003 relative to the
MODIS era mean. This 1s somewhat surprising, given the expectation
that drought will increase surface albedo ,but is consistent with some
field studies and with the ASTER results in the present study.

In the ASTER analysis, the negligible change in broadband albedo
can be explained in part by a decrease in near infrared reflectivity that
offset the increase in reflectivity in the visible range.
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3.2.2 Sensible heat flux

Averaged over the ASTER 1mage, it estimates for instantaneous (10
a.m.) sensible heat flux are 227.7 (£119.3) W m 2 and 134.5 (£86.8) W
m 2 for forests and the agricultural matrix (excluding bare soil),
respectively, in 2000. The = here represents the one standard deviation.
The sensible heat flux for bare soil was not calculated because of the
difficulty of estimating near-surface stability and temperature-correction
terms. Variability within land-cover type is large relative to the
difference between forests and agricultural lands, but the calculation
indicates that the 2003 enhancement in sensible heat flux was greater for
agricultural lands than for forests.
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4. CONCLUSIONS

In summary ,the results of this study indicate that the heat wave of 2003
bore a phenomenological resemblance to model-predicted summers of the
late twenty-first century .There was an unusually early spring green-up in
response to the high temperatures in April. This was followed by a severe
late-summer drought that was greatest in the ‘transitional belt’ between
MED and ATL climate zones. The temperature anomaly was largest in
south central France and was associated with substantially enhanced
sensible heat flux.

If heat waves like that of 2003 become typical in the future European
climate, then it 1s possible that ‘extreme’ events may change the observed
trend in NDVI in some portions of Europe, with implications for regional
hydrology, agricultural and forestry outlooks, and terrestrial carbon
sequestration.
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Thank you!
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