进展汇报

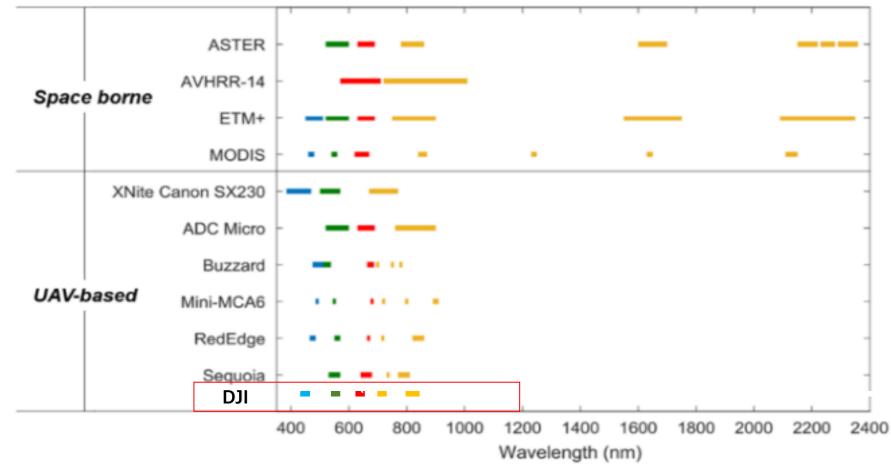
来自: 陈明健

2020/08/21

OUTLINE

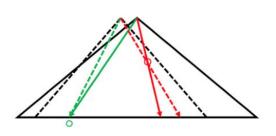
- P4Multispectral飞行器介绍
- 基于多光谱景观反照率实验

P4-Multispectral | 精灵4 多光谱版

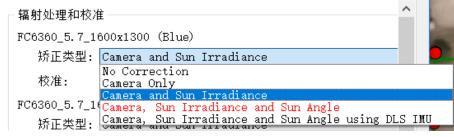


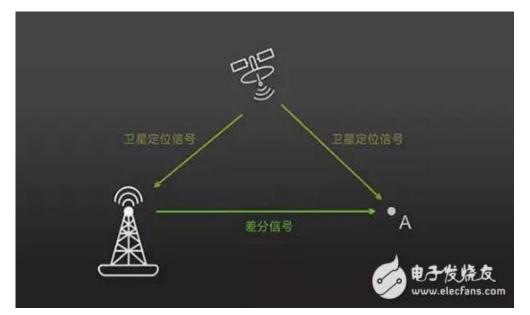
- 精灵4是优秀的飞行平台
 - 多光谱成像系统
 - RTK定位模块
 - 配套处理软件

多光谱成像系统


1个可见光相机及5个多光谱相机(蓝光,绿光,红光,<u>红边</u>和<u>近红外</u>) 450、560、650、730±16nm;840±26nm

*参考文献: Narrow-to-Broadband Conversion for Albedo Estimation on Urban Surfaces by UAV-Based Multispectral Camera


相片EXIF信息




XMP: 60 <drone-dji:lrradiance>6109.689</drone-dji:lrradiance>

RTK定位模块

• RTK (Real Time Kinematic), 即载波相位差分技术,它能够实时地提供测站点在指定坐标系中的三维定位结果,并达到厘米级精度。

• 对于测绘无人机来说: 为了校正误差还需要派人去实地布设若干个像控点, 而用了RTK则可以基本不用、或是只需要少量像控点。

GNSS 接收机

定位精度

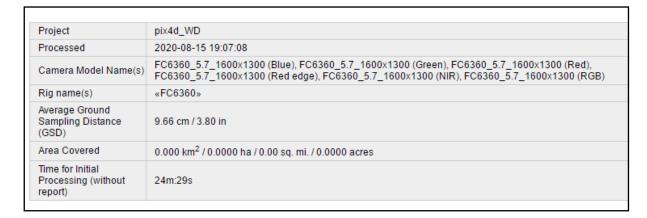
单点

水平: 1.5 m (RMS)

垂直: 3.0 m (RMS)

RTK

水平: 1 cm+1 ppm (RMS)

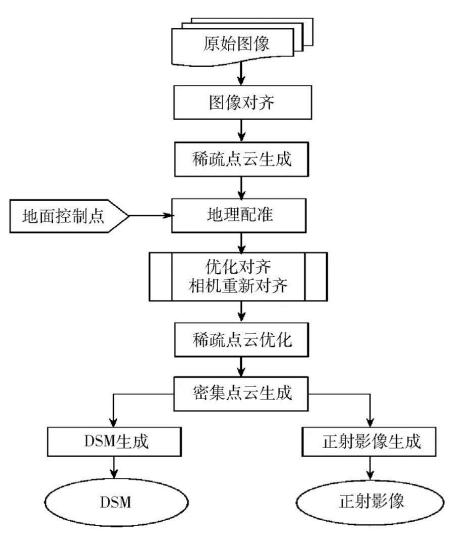

垂直: 2 cm+1 ppm (RMS)

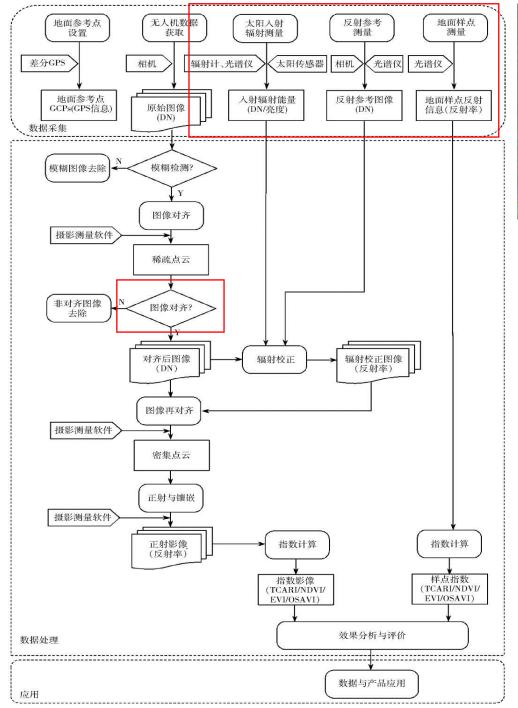
1 ppm: 每增加 1 km, 精度变差 1 mm。

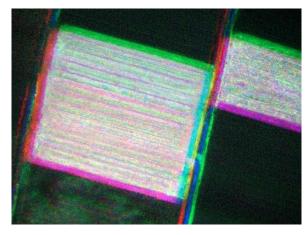
例如距离基站 1 km,则精度为 1.1 cm。

图像处理软件

DJI Terra Aerial Triangulation Quality Report

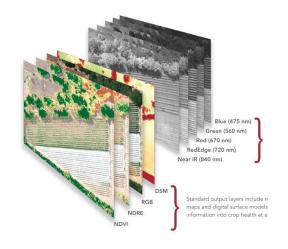

Image Information Overview


Item	Value			
Input Images	160			
Image With Position	160			
Calibrated Images	160			
Use Image Position	True			
Georeferencing RMSE	0.016 m			
SFM Time	0.952 min			


- Pix4d Mapper
 - 自定义能力高, 地理建模好

- 大疆智图软件-基础版
 - 处理速度快、与多光谱更适配

图像处理流程



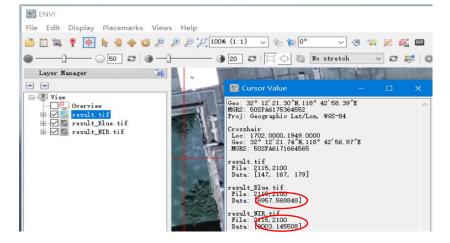
• 图像匹配

- 几何精纠正方法
- 空中三角测量方法
- 虚拟摄影方法

输出成果

成果	数据类型	描述
result.tif	8bit 4 通道 GeoTiff	彩色影像正射镶嵌结果。
result_Blue.tifresult_Green.tifresult_Red.tifresult_RedEdge.tifresult_NIR.tif	32bit 单通道 GeoTiff	各波段影像的正射镶嵌结果。
index_map: GNDVI.tif LCI.tif NDRE.tif NDVI.tif OSAVI.tif	32bit 单通道 GeoTiff	根据各波段影像的正射镶嵌结果计算得出的指数。

Terra 重建的单波段成果的数值是基 于实验室下标定的数据,可以用来在 Terra 中计算 NDVI 配合农机使用。 但无明确物理意义,是和反射率正相 关的一个数值。 Reflectance


太阳辐照度 (Irradiance)

- 光强传感器数据 x 相机感度校准参数(默认设置~)
- * 用于计算反射率(Reflectance)的中间值,用于计算

$$NIR_{ref} = \frac{NIR_{reflected}}{NIR_{incident}} = \frac{NIR_{camera}}{NIR_{LS}} \times \rho_{NIR} \times \frac{pCam_{NIR}}{pLS_{NIR}} = \frac{NIR_{camera} \times pCam_{NIR}}{NIR_{LS} \times pLS_{NIR}} \times \rho_{NIR}$$
 (Eq. 4),

ρ y 是调节图像信号与多光谱光强传感器信号之间相互转化的参数.我们以 NIR 波段为标 准、所有其他波段的相机都参照 NIR 波段的相机的感度做校准、同时所有其他波段的多 光谱光强传感器也都参照NIR 波段的多光谱光强传感器的感度做校准,

分别为 ρCam 和 ρLs

LCI.tif

NDRE.tif

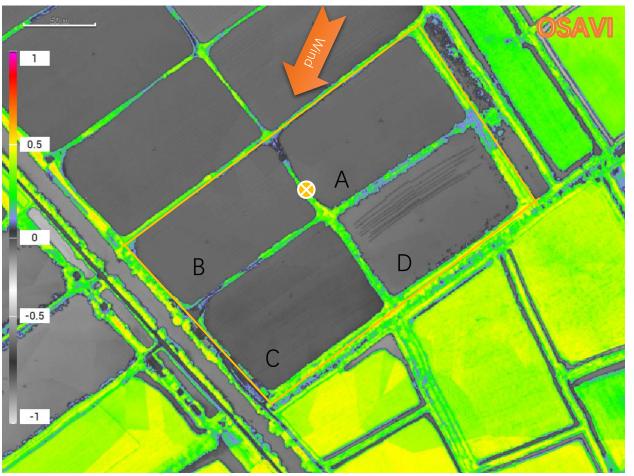
NDVI.tif

OSAVI.tif

P4M-潜在用途

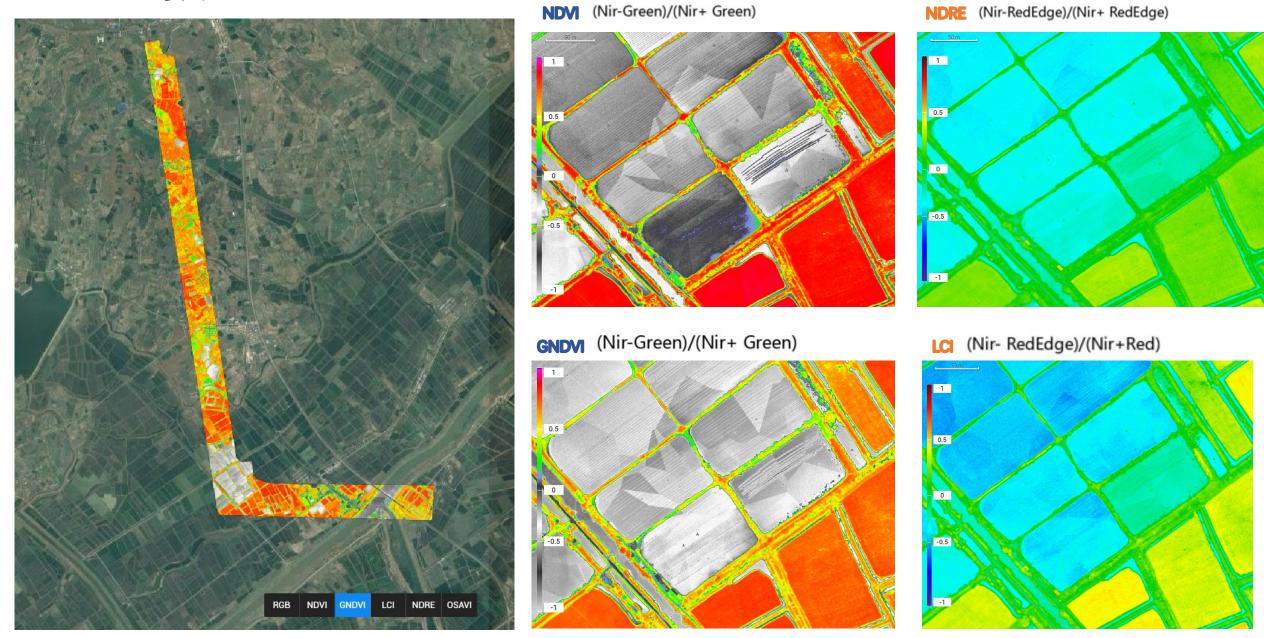
• 生态指数

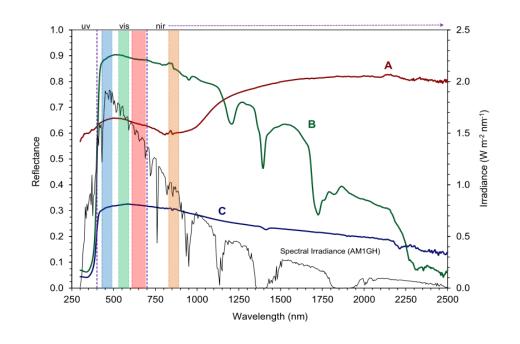
指数缩写	意义	计算公式
NDVI	判断植被叶绿素含量最为常用的指数。	(Nir-Red)/(Nir+Red)
GNDVI	该指数用绿色波段取代 NDVI 中的红色波段。 有研究显示,该指数在实际使用时比 NDVI 更加稳定。	(Nir-Green)/(Nir+ Green)
NDRE	有研究显示,该指数对判断非初期作物的叶绿素含量有较好的效果。	(Nir-RedEdge)/(Nir+ RedEdge)
LCI	有研究显示,该指数对判定叶子的叶绿素及含氮 量有较好的效果。	(Nir- RedEdge)/(Nir+Red)
OSAVI	植被生长初期,若密度不高,植被指数受土壤因素影响较大。该指数是在 NDVI 的基础上将土壤因素纳入考量,对识别生长初期植物的叶绿素含量较为有效。	(Nir-Red)/(Nir+Red+0.16) (其中, Nir、Red 为归一化的影像)

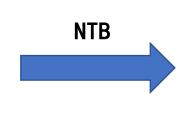

*参考文献:

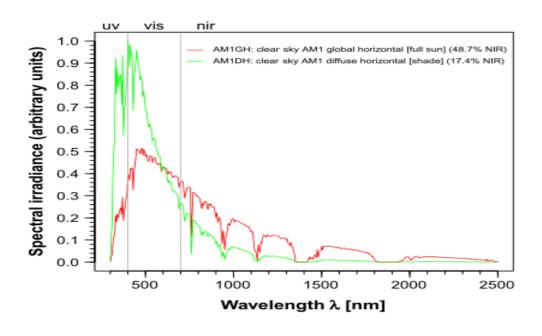
轻小型无人机多光谱遥感技术应用进展-农业机械学报(2018)

鱼塘航拍展示1

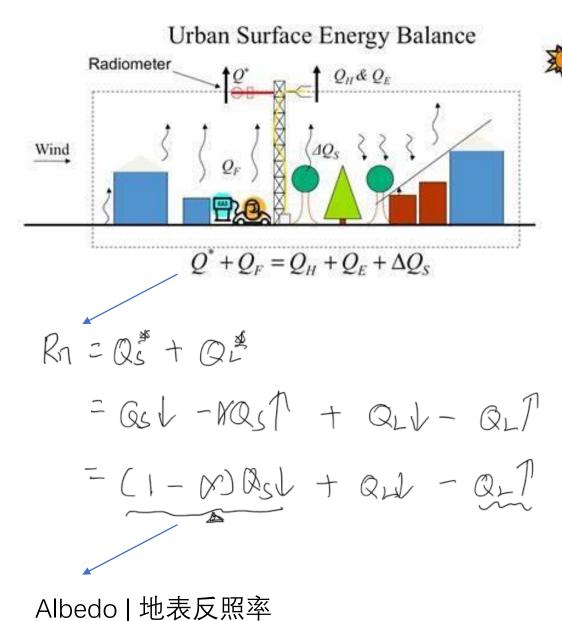

OSAVI = (NIR - Re d)/(NIR + Re d + 0.16)

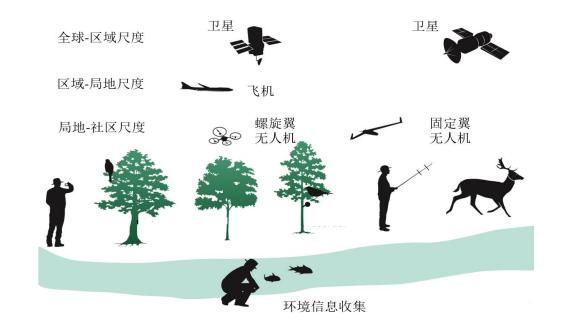

- 土地类型分类
 - 区分水体、非水体
 - 植被情况(细化)


鱼塘航拍展示2



基于多光谱的景观反照率估算


- 背景
- 进展
- 目的
- 结果



实验背景

研究背景

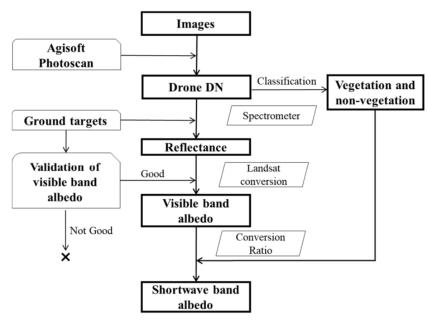


Figure 3. Workflow for estimating landscape visible and shortwave band albedo.

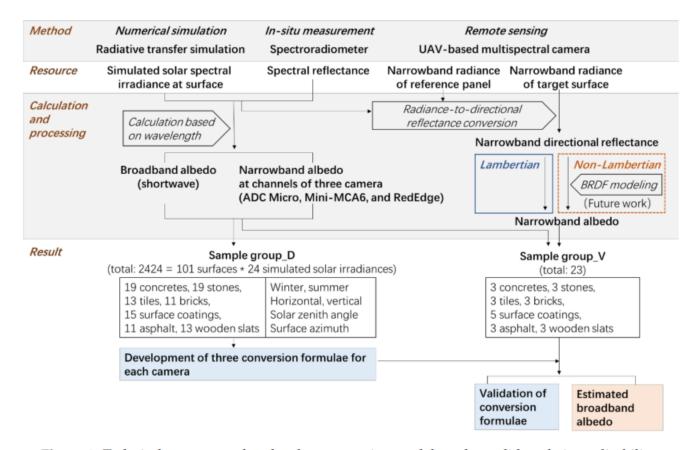


Figure 2. Technical process used to develop conversion models and to validate their applicability.

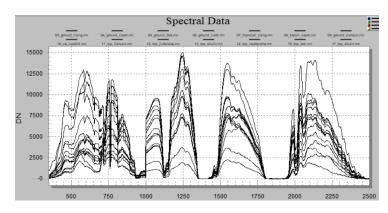
- Measuring Landscape Albedo Using Unmanned Aerial Vehicles (2018) ——Chang Cao
- Narrow-to-Broadband Conversion for Albedo Estimation on Urban Surfaces by UAV-Based Multispectral Camera (2020) ——Xi Xu

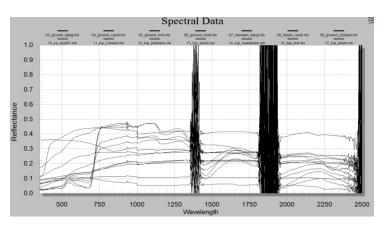
模型发展

$$\alpha_{_RedE_reg} = 0.3973B - 0.0102G + 0.0454R - 0.1017RE + 0.6116NIR + 0.0075$$

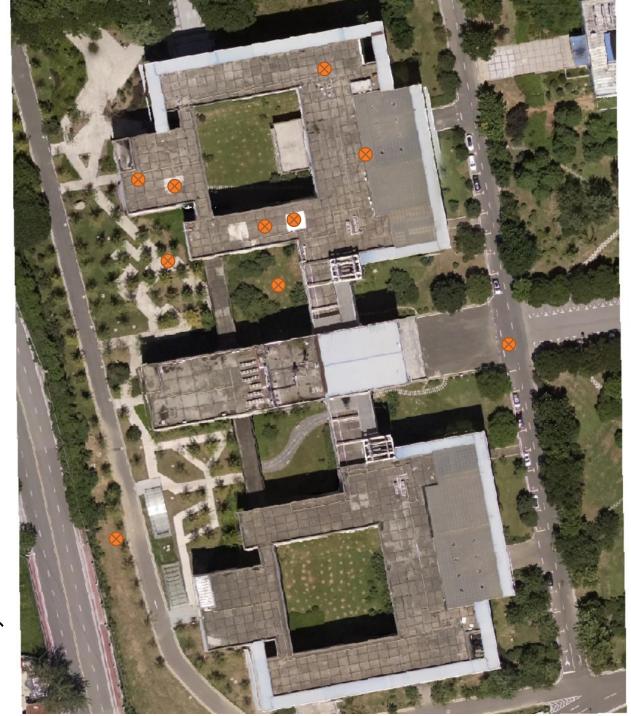
$$\alpha = \sum_{i} \alpha_{N} w_{N}$$

$$w_{N} = \int_{a_{N}}^{b_{N}} R(\lambda_{i}) d\lambda / \int_{350}^{2500} R(\lambda_{i}) d\lambda$$

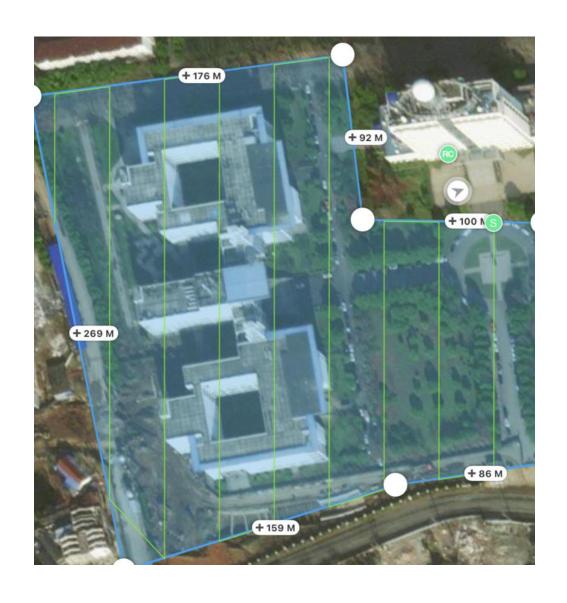

(3)


Table 4. Physical weighting coefficients for sensors and solar irradiance (Rs_i).

Sensor		ADC-N	licro Mini-MCA6						RedEdge							
Variable *		0.91	1		0.9193						0.9282					
				UID	D	G			NIID1	NIR2	D	G		DE	NIID	
Channel	G	R	Г	VIR	В	G	R	RE	NIR1	NIKZ	В	G	R	RE	NIR	
Rs_1	0.363	32 0.14	62 0.	.4950	0.2197	0.1440	0.1208	0.0697	0.0892	0.3695	0.2157	0.1510	0.1076	0.0904	0.4459	
Rs_2	0.357	71 0.14	72 0.	.4999	0.2153	0.1430	0.1207	0.0704	0.0912	0.3722	0.2113	0.1497	0.1077	0.0917	0.4503	
Rs_3	0.338	32 0.14	77 0.	.5180	0.2039	0.1375	0.1185	0.0724	0.0964	0.3843	0.2000	0.1433	0.1059	0.0948	0.4668	
Rs_4	0.322	25 0.14	38 0.	.5372	0.1998	0.1280	0.1121	0.0737	0.1012	0.3982	0.1957	0.1330	0.1003	0.0967	0.4847	
Rs_5	0.385	0.15	15 0.	.4682	0.2333	0.1519	0.1265	0.0702	0.0907	0.3405	0.2291	0.1595	0.1127	0.0915	0.4184	
Rs_6	0.384	3 0.15	15 0.	.4689	0.2329	0.1517	0.1264	0.0702	0.0907	0.3412	0.2287	0.1593	0.1126	0.0914	0.4191	
Rs_7	0.383	9 0.15	17 0.	.4690	0.2325	0.1518	0.1266	0.0703	0.0909	0.3410	0.2283	0.1594	0.1127	0.0916	0.4191	
Rs_8	0.383	0.15	22 0.	.4694	0.2317	0.1519	0.1268	0.0704	0.0914	0.3409	0.2275	0.1594	0.1130	0.0919	0.4194	
Rs_9	0.645	59 0.12	33 0.	.2345	0.4828	0.1603	0.1100	0.0519	0.0598	0.1477	0.4741	0.1744	0.0963	0.0672	0.1992	
Rs_10	0.351	0.15	0.	.5024	0.2068	0.1458	0.1236	0.0716	0.0923	0.3729	0.2030	0.1526	0.1102	0.0932	0.4520	


光谱测量

- 03_ground_liqing.mn
- 04_ground_caodi.mn
- 05_ground_tree.mn
- 06_ground_luodi.mn
- 07_menqian_liqing.mn
- 08_tianjin_caodi.mn
- 09_ground_cizhaun.mn
- 10 ce luodi01.mn
- 11_top_Cshuini.mn
- 12_top_jiufanshe.mn
- 13_top_shuini.mn
- 14_top_newfanshe.mn
- 🗎 16_top_boli.mn
- 17_top_shuini.mn



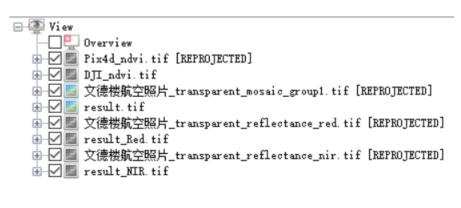
- ASD地物光谱仪, Rs3软件处理
- 10条平均, 地物类型: 沥青、裸地、草地、树木、水泥、玻璃。

飞行参数

实验地点: 学校文德楼

实验时间: 12:30

实验天气: 晴朗天气

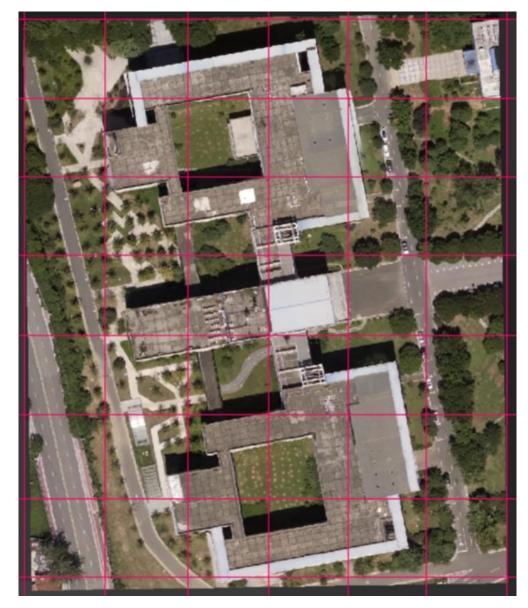

航向重叠率: 90%

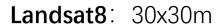
旁向重叠率: 80%

飞行时间: 10min40s

飞行面积: 5.54HA

Reflectance | 反射地图





 $\alpha_{RedE_reg} = 0.3973B - 0.0102G + 0.0454R - 0.1017RE + 0.6116NIR + 0.0075$

卫星对比

Sentinel2A: 10x10m

讨论后续

- 1. 关于多光谱辐射标定的方法确定
- 2. 加入多光谱通道后的景观反照率对比
- 3. 与卫星的反照率数据对比与可能性分析
- 4. 一天内,反照率的变化情况。

#End Thanks