Transfer coefficients of momentum, heat and water vapor over Lake Taihu: dependence on wind speed and atmospheric stability

Cao Zhengda 2015-4-10

Outline

- Background
- Data and Method
- Results
 - wind speed atmosphere stability
- Conclusions

Background

- Water-air interactions(the surface energy exchanges and hydrological processes over open water surfaces) are driven by the fluxes of momentum, heat and water vapor.
- In many numerical weather prediction and climate models, the exchange of momentum and heat between water surfaces and the lower atmosphere are parameterized using transfer relationships (Subin et al., 2012).

Data source

PTS site:

Time: 2013.6 - 2014.12 WD: 0-225°, 315-360°

XLS site:

Time: 2012.12 - 2014.12

WD: $0-160^{\circ}$, $330-360^{\circ}$

Method

The bulk transfer coefficients

$$\tau = \rho_a C_D u^2$$

$$LE = \rho_a L_v C_E u (q_s - q_a)$$

$$H = \rho_a c_p C_H u (T_s - T_a)$$

 C_D, C_E, C_H : transfer coefficients of momentum, water vapor and sensible heat.

The relation between roughness lengths for momentum(z_0), water vapor(z_q), sensible heat(z_T) and the transfer coefficients.

$$C_{D} = k^{2} / [\ln(z/z_{0}) - \psi_{M}(\zeta)]^{2}$$

$$C_{E} = k^{2} / \{ [\ln(z/z_{0}) - \psi_{M}(\zeta)] [\ln(z/z_{q}) - \psi_{W}(\zeta)] \}$$

$$C_{H} = k^{2} / \{ [\ln(z/z_{0}) - \psi_{M}(\zeta)] [\ln(z/z_{T}) - \psi_{H}(\zeta)] \}$$

 ζ (z/L): Atmosphere stability ψ_M , ψ_W , ψ_H the integral similarity functions for momentum, water and sensible heat

The transfer coefficients are adjusted to the standard reference height of 10m and for neutral stability.

$$C_{D10N} = k^2 / [\ln(z/z_0)]^2$$

$$C_{E10N} = k^2 / [\ln(z/z_0) \ln(z/z_q)]$$

$$C_{H10N} = k^2 / [\ln(z/z_0) \ln(z/z_T)]$$

Results

Data quality

Fig1 Variation of σ_w/u_* with ζ of the measurement and the literature relationship(Garratt 1992; Kaimal and Finnigan 1994).

$$\sigma_w / u_* = 1.25(1 - 3\zeta)^{1/3}$$
 for $\zeta < 0$

$$\sigma_w / u_* = 1.25(1 + 0.2\zeta)$$
 for $\zeta > 0$

• The effective transfer coefficients

Fig2 bulk transfer relationships at PTS and XLS sites

Fig3 bulk transfer relationships at XLS site

Table 1 A summary of the effective transfer coefficients

Lake name		10 ³ C _{D10}	10 ³ C _{E10}	10 ³ C _{H10}	Reference
Lake Taihu	PTS	1.4 ± 0.03	1.1 ± 0.01	1.8 ± 0.02	This study
	XLS	1.2 ± 0.02	1.0 ± 0.01	1.6 ± 0.02	
	MLW	1.8 ± 0.02	0.9 ± 0.01	1.5 ± 0.02	Xiao et al. (2013)
	DPK	1.9 ± 0.03	1.0 ± 0.01	1.2 ± 0.02	
	BFG	1.1 ± 0.02	1.0 ± 0.01	1.4 ± 0.02	
Lake Erhai		2.02	1.36	1.47	Liu et al.(2014)
Lake Tamnaren		1.4 ± 0.34	1.0 ± 0.40	1.3±0.35	Heikinheimo et al.(1999)
Great Slave Lake		1.1 ± 0.06	2.0±0.19	0.4 ± 0.05	Blanken et al.(2003)
Lake Valkea- Kotinen		5.2±1.05	1.0±0.04	1.0±0.09	Nordbo et al (2011)

The relationship between transfer coefficients and wind speed

Fig4 wind speed histograms at PTS and XLS

The percentage of strong winds ($u_{10}>4$ m s⁻¹) was 58.2% and 58.6% at the PTS and XLS sites, respectively.

Fig5 Neutral transfer coefficients at 10-m height for the PTS, XLS sites.

The relationship between transfer coefficients and stability

Fig5 The distribution pie of atmospheric stability ζ at PTS and XLS sites

79.4% and 76.9% of the atmosphere condition for PTS and XLS sites respectively are under the neutral condition ($|\zeta|$ <0.1) or unstable condition ($|\zeta|$ <-0.1).

13

Fig6 The effective transfer coefficients at 10-m height versus atmospheric stability for PTS and XLS sites

The relationship between transfer coefficients (with stability correction) and neutral transfer coefficients (without stability correction).

$$C_{D} / C_{DN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-2}$$

$$C_{E} / C_{EN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-1} [1 - \psi_{E}(\zeta) / \ln(z/z_{q})]^{-1}$$

$$C_{H} / C_{HN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-1} [1 - \psi_{H}(\zeta) / \ln(z/z_{T})]^{-1}$$

Table 2 The results of fluxes using the transfer coefficients at the reference height without and with stability correction

Site ID	Flux	Without stability correction	With stability correction
		RMSE	RMSE
	u∗/(m s ⁻¹)	0.043	0.041
PTS	LE/(W m ²)	30.67	30.13
	H/(W m ²)	8.07	7.94
	u∗/(m s ⁻¹)	0.044	0.042
XLS	LE/(W m ²)	27.86	25.8
	H/(W m ²)	8.12	7.88

Conclusion

• In the weak wind regime (0-4 m s⁻¹), the transfer coefficients for momentum, water vapor and sensible heat decreased quickly with increasing wind speed, while reaching an asymptotic.

• The transfer coefficients is sensitive to stability correction over short time-scales while not over long time-scales.

On-going work

- Further studying of the spatial variation of transfer coefficients of momentum, sensible and water vapor and its main factors.
- The relationship between wave height and momentum transfer coefficients at DPK site.

Thank you