Transfer coefficients of momentum, heat and water vapor over Lake Taihu: dependence on wind speed and atmospheric stability Cao Zhengda 2015-4-10 # Outline - Background - Data and Method - Results - wind speed atmosphere stability - Conclusions # Background - Water-air interactions(the surface energy exchanges and hydrological processes over open water surfaces) are driven by the fluxes of momentum, heat and water vapor. - In many numerical weather prediction and climate models, the exchange of momentum and heat between water surfaces and the lower atmosphere are parameterized using transfer relationships (Subin et al., 2012). ### Data source PTS site: Time: 2013.6 - 2014.12 WD: 0-225°, 315-360° XLS site: Time: 2012.12 - 2014.12 WD: $0-160^{\circ}$, $330-360^{\circ}$ ## Method The bulk transfer coefficients $$\tau = \rho_a C_D u^2$$ $$LE = \rho_a L_v C_E u (q_s - q_a)$$ $$H = \rho_a c_p C_H u (T_s - T_a)$$ C_D, C_E, C_H : transfer coefficients of momentum, water vapor and sensible heat. The relation between roughness lengths for momentum(z_0), water vapor(z_q), sensible heat(z_T) and the transfer coefficients. $$C_{D} = k^{2} / [\ln(z/z_{0}) - \psi_{M}(\zeta)]^{2}$$ $$C_{E} = k^{2} / \{ [\ln(z/z_{0}) - \psi_{M}(\zeta)] [\ln(z/z_{q}) - \psi_{W}(\zeta)] \}$$ $$C_{H} = k^{2} / \{ [\ln(z/z_{0}) - \psi_{M}(\zeta)] [\ln(z/z_{T}) - \psi_{H}(\zeta)] \}$$ ζ (z/L): Atmosphere stability ψ_M , ψ_W , ψ_H the integral similarity functions for momentum, water and sensible heat The transfer coefficients are adjusted to the standard reference height of 10m and for neutral stability. $$C_{D10N} = k^2 / [\ln(z/z_0)]^2$$ $$C_{E10N} = k^2 / [\ln(z/z_0) \ln(z/z_q)]$$ $$C_{H10N} = k^2 / [\ln(z/z_0) \ln(z/z_T)]$$ # Results #### Data quality Fig1 Variation of σ_w/u_* with ζ of the measurement and the literature relationship(Garratt 1992; Kaimal and Finnigan 1994). $$\sigma_w / u_* = 1.25(1 - 3\zeta)^{1/3}$$ for $\zeta < 0$ $$\sigma_w / u_* = 1.25(1 + 0.2\zeta)$$ for $\zeta > 0$ #### • The effective transfer coefficients Fig2 bulk transfer relationships at PTS and XLS sites Fig3 bulk transfer relationships at XLS site Table 1 A summary of the effective transfer coefficients | Lake name | | 10 ³ C _{D10} | 10 ³ C _{E10} | 10 ³ C _{H10} | Reference | |-------------------------|-----|----------------------------------|----------------------------------|----------------------------------|-----------------------------| | Lake
Taihu | PTS | 1.4 ± 0.03 | 1.1 ± 0.01 | 1.8 ± 0.02 | This study | | | XLS | 1.2 ± 0.02 | 1.0 ± 0.01 | 1.6 ± 0.02 | | | | MLW | 1.8 ± 0.02 | 0.9 ± 0.01 | 1.5 ± 0.02 | Xiao et al. (2013) | | | DPK | 1.9 ± 0.03 | 1.0 ± 0.01 | 1.2 ± 0.02 | | | | BFG | 1.1 ± 0.02 | 1.0 ± 0.01 | 1.4 ± 0.02 | | | Lake Erhai | | 2.02 | 1.36 | 1.47 | Liu et al.(2014) | | Lake Tamnaren | | 1.4 ± 0.34 | 1.0 ± 0.40 | 1.3±0.35 | Heikinheimo et
al.(1999) | | Great Slave Lake | | 1.1 ± 0.06 | 2.0±0.19 | 0.4 ± 0.05 | Blanken et al.(2003) | | Lake Valkea-
Kotinen | | 5.2±1.05 | 1.0±0.04 | 1.0±0.09 | Nordbo et al (2011) | #### The relationship between transfer coefficients and wind speed Fig4 wind speed histograms at PTS and XLS The percentage of strong winds ($u_{10}>4$ m s⁻¹) was 58.2% and 58.6% at the PTS and XLS sites, respectively. Fig5 Neutral transfer coefficients at 10-m height for the PTS, XLS sites. #### The relationship between transfer coefficients and stability Fig5 The distribution pie of atmospheric stability ζ at PTS and XLS sites 79.4% and 76.9% of the atmosphere condition for PTS and XLS sites respectively are under the neutral condition ($|\zeta|$ <0.1) or unstable condition ($|\zeta|$ <-0.1). 13 Fig6 The effective transfer coefficients at 10-m height versus atmospheric stability for PTS and XLS sites The relationship between transfer coefficients (with stability correction) and neutral transfer coefficients (without stability correction). $$C_{D} / C_{DN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-2}$$ $$C_{E} / C_{EN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-1} [1 - \psi_{E}(\zeta) / \ln(z/z_{q})]^{-1}$$ $$C_{H} / C_{HN} = [1 - \psi_{M}(\zeta) / \ln(z/z_{0})]^{-1} [1 - \psi_{H}(\zeta) / \ln(z/z_{T})]^{-1}$$ Table 2 The results of fluxes using the transfer coefficients at the reference height without and with stability correction | Site ID | Flux | Without stability correction | With stability correction | |---------|-------------------------|------------------------------|---------------------------| | | | RMSE | RMSE | | | u∗/(m s ⁻¹) | 0.043 | 0.041 | | PTS | LE/(W m ²) | 30.67 | 30.13 | | | H/(W m ²) | 8.07 | 7.94 | | | u∗/(m s ⁻¹) | 0.044 | 0.042 | | XLS | LE/(W m ²) | 27.86 | 25.8 | | | H/(W m ²) | 8.12 | 7.88 | # Conclusion • In the weak wind regime (0-4 m s⁻¹), the transfer coefficients for momentum, water vapor and sensible heat decreased quickly with increasing wind speed, while reaching an asymptotic. • The transfer coefficients is sensitive to stability correction over short time-scales while not over long time-scales. # On-going work - Further studying of the spatial variation of transfer coefficients of momentum, sensible and water vapor and its main factors. - The relationship between wave height and momentum transfer coefficients at DPK site. # Thank you