

Characteristics of dissolved N₂O concentrations and flux in the agricultural watershed of Jurong Reservoir

Reporter: BIAN Hang

Outline

≥ 1 Introduction

>2 Experimental method

> 3 Results and Discussion

>4 Conclusions

1 Introduction

- Nitrous oxide (N_2O) is the third most important greenhouse gas and grows annually by 0.2 percent as a result of anthropogenic perturbation in antural nitrogen (N) cycle (Khalil et al., 2002).
- Agriculture is the major source of N_2O (Kroeze et al.,1999), while little attention is given to agriculture watershed. (Beaulieu et al., 2008).
- This report studies N_2O concentration and flux in the Jurong Reservoir watershed, which has obviously spatial and temporal changes.

2 Experimental method

2.1 Site description and sample collection

Fig.1 Location and sampling map of the Jurong Reservoir watershed.

2 Experimental method

2.2 Sample analyses

$$K = [N_2 O]_g / [N_2 O]_L \longrightarrow [N_2 O]_L = \frac{[(X \times V_L / 18) \times 10^9]}{(1 - X) \times V_L} \longrightarrow P = EX$$
$$[N_2 O]_W = [N_2 O]_g \times (\frac{1}{k} + \beta) \longrightarrow \beta = V_g / V_L$$

$$F = k(C_W - C_{eq})$$

$$k/k_{600} = (S_C/600)^{-n} \longrightarrow \begin{cases} n=2/3 & \text{:for } U_{10} < 3.7\text{m/s} \\ n=0.5 & \text{:for } U_{10} \ge 3.7\text{m/s} \\ k_{600} = 2.07 + 0.215 U_{10}^{1.7} \end{cases}$$

Fig.2 The change of meteorological data at Jurong Reservoir watershed.

Fig.3Temporal variation of dissolved N₂O concentration and flux in different water spaces.

Fig.4 The N₂O flux of six sites in different months in River 1.

Fig.5Temporal variation of dissolved N₂O concentration and flux in different rivers.

Fig.6 The dissolved N₂O concentration and flux in different water spaces.

Fig.7 (a)NH₄+-N, (b)NO₃-N, (c)NO₂-N and (d)DIN concentrations in different water space.

注: * P < 0.05, * * P < 0.01。

	NH ₄ +-N	NO ₃ N	NO ₂ N	DIN	
River	0.46**	0.61 * *	0.42 * *	0.63 * *	
Reservoir	-0.15	-0.06	-0.28	-0.10	
Pond	0.78**	0.32	0.74**	0.76**	
Total	0.45 * *	0.60**	0.45 * *	0.64 * *	

Table.1Correlation analysis between N_2O concentration and Inorganic salt.

Fig.8 The relationship between N₂O concentration and (a)T (b)DO (c)pH(d)ORP.

Fig. 9 The relationship between N₂O flux and (a)T (b)DO (c)pH(d)ORP.

Table.2The level of dissolved N₂O flux in other rivers ponds ,and reservoirs.

water type	study area	time	N ₂ O flux	references
River	Jurong Reservoir watershed	2010.9~2012.9	12.9±21.8ug/m ² /h	Xia et al.2013
	3 rivers runoff rivers	2006、2009、 2010	18.0ug/m ² /h	Wang et al.2013
	Tuojia watershed	2014.4~2015.4	32.5±56.4ug/m ² /h	Zhang et al.2016
	Jurong Reservoir watershed	2015.10~2016.8	29.1±24.1ug/m ² /h	this study
Pond	Jurong Reservoir watershed	2010.9~2012.9	4.5 ± 16.3 ug/m ² /h	Xia et al.2013
	Jurong Reservoir watershed	2015.10~2016.8	20.4±24.0ug/m ² /h	this study
Reservoir	Jurong Reservoir watershed	2010.9~2012.9	7.9 ± 10.0 ug/m ² /h	Xia et al.2013
	Jurong Reservoir watershed	2015.10~2016.8	11.8±12.5ug/m ² /h	this study

4 Conclusions

- In Jurong Reservior watershed, the maximum of N₂O flux appeared in the summer and the peak of N₂O concentration occurred in the summer and winter.
- For three types of water bodies, N_2O flux and N_2O was maximum in river, higher than that in ponds and reservior.
- The N₂O flux decreased gradually from upstream to downstream in River 1.
- N_2O concentration in rivers presented obviously postive correlation with ORP and DO, while is negative with pH.N₂O flux had the obviously postive correlation with T_W and negative correlation with DO and ORP.

Thank you for your attention!