

Impact of Stratospheric Intrusion on High Ozone in the Lower Troposphere over the Hong Kong Region A case study

Outline

- Motivation
- Objective
- Model and Data
- Result
- Summary
- Future work

Motivation

O1 Tropospheric ozone is a key constitute in the atmosphere. High concentration of O_3 is an air pollutant. O_3 is a greenhouse gas and the source of OH radicals.

About 90 percentage ozone concentrated in the stratosphere and it makes a important contribution to tropospheric ozone budget.

02

03 Stratosphere and troposphere have different dynamic and chemical characterristics. The occurrence of high ozone and potential vorticity followed by dry air is associated with stratospheric intrusion.

It was observed that the high ozone concentrations appeared at the 2~4 km height in Hong Kong during March-May.

05 Stratospheric intrusion could be a significant contributor the while biomass burning from Southeast Asia plays an important role. The study of the former is much less than the latter.

Motivation

Fig 1. Spatial and temporal distribution of O₃ in Hong Kong from 2004 to 2013 year by year

Objectives

Scientific Questions and Objective

Q Scientific Questions

? What is the relative contribution of STE to the high ozone concentration above the PBL (2~4 km AGL) ?

? How is the STE contribution changed with the time?

\bigcirc Objectives

We combine WRF/Chem simulations with ozone sounding and other observational data to quantify the relative contribution of STE to the high concentration ozone above the PBL (i.e., 2~4 km AGL).

Fig 2. Spatial and temporal distribution of monthly mean O_3 in Hong Kong during 2004-2013

WRF-Chem

Tab. 1 Parameter settings in WRF-Chem model

Domain	1,2,3			
Version	3.7.1			
Time	04 March 2013 to 06 March 2013			
Initial Meteorological Field	Fnl (1°×1°) time: 6h 26 levels in vertical (1000hPa to 10hPa)			
Horizontal Resolution	27km 9km 3km			
Р-Тор	50 hPa			
Horizontal Grid Point	140×130 130×118 118×106			
Vertical Layers	46			

WRF-Chem

Iab 2. Parameter schemes used in model				
Schemes	Configuration			
mp_physics	Lin Microphysics			
Ra_sw_physics	Goddard			
sf_surface_physics	Noah Land surfaceModel			
Ra_lw_physics	Rapid Radiative Transfer Model			
bl_pbl_physics	the Yonsei University planetary			
Chem_opt	RADM2			
Phot_opt	Fast-J photolysis			

MOZART/GEOS-5 Data

- Model for Ozone and Related Chemical Tracers version-4
- Initial and boundary conditions for chemical fields in WRF-Chem are used from the MOZART-4/GEOS-5 simulations (<u>http://www.acd.ucar.edu/wrf-chem/mozart.shtml</u>)
- Driven by meteorological fields from the NASA GMAO GEOS-5 model
- Horizontal resolution : 1.9°×2.5°
- Vertical : 56 layers
- Spatially and temporally varying : 6h
- Uses anthropogenic emissions based on David Streets' inventory for <u>ARCTAS</u> and fire emissions from FINN-v1 (Wiedinmyer et al., Geosci. Model Devel, 2011).

MOZART Data

Fig 3. MOZART data (left) and chemical boundary conditions for the model

Upper Boundary Condition

Data

Tab 3. The data used in following research

Ozonesonde Data	Surface Site	ECMWF Reanalysis Data
Hong Kong observatory(22.18°N · 114.1°E)	Hourly ozone concentration	Horizontal resolution:0.125°×0.125°
Observed once a week	Sha Tin Tap Mun Tai po	Time resolution:6h
Linear Interpolated in 10m distance		37 vertical pressure levels: from 1000 to 1 hPa

Ozone Concentration

(a) no MOZART data and upper boundary condition

(b) with MOZART data and upper boundary condition

Fig 4. Simulated vertical profiles(blue) of ozone concentration in comparison with measured profiles(red) at Hong Kong observation(22.31°N · 114.17°E) at 0600 UTC 06 March 2013

Relative Humidity

(a) no MOZART data and upper boundary condition

(b) with MOZART data and upper boundary condition

Fig 5. Simulated vertical profiles(blue) of relative humidity in comparison with measured profiles(red) at Hong Kong observation(22.31°N · 114.17°E) at 0600 UTC 06 March 2013

Temperature

Fig 6. Simulated vertical profiles(dashed) of temperature(°C) in comparison with measured profiles(solid) at Hong Kong at 0600 UTC 06 March 2013

Surface temperature

Fig 7. Simulated (dashed) surface temperature(°C) in comparison with measured profiles(solid) (a)Sha Tin (b)Tap Mun (c)Tai Po site at 05-06 March 2013

Ozone Concentration

Fig 8. Time series of surface ozone concentration at Hong Kong (a)Sha Tin (b)Tap Mun (c)Tai Po site at 05-06 March 2013

Correlations

Tab 4. The correlation coefficient, root-mean-square and mean bias errors of measured and predicted at Hong Kong in March, 2013

	R	Р	RMSE	MB
O ₃ Vertical Obs	0.73	<0.0001	22.472	10.33
RH Vertical Obs	0.76	< 0.0001	21.0465	-8.2322
T Vertical Obs	0.998	<0.0001	2.8	2.2
Sha Tin (O ₃)	0.69	< 0.0001	13.2	-7.1
Tap Mun(O ₃)	0.69	<0.0001	13.8	9
Tai Po (O ₃)	0.76	< 0.0001	18.7	-16.2
Sha Tin (T)	0.958	<0.0001	1.7892	0.8524
Tap Mun (T)	0.9342	< 0.0001	1.8325	-0.208
Tai Po (T)	0.947	<0.0001	1.5418	0.4816

Simulated Ozone

Relative Humidity

Wind/Geopotential Height/Potential Vorticity

(color scale) at the 300 hPa level at Hong Kong at 0600 UTC 10 May 2013

Subtropical Jet Stream

As the air moves poleward, it cools, becomes more dense, and descends at about 30th parallel, creating a high-pressure area.

Hadley cell is a closed circulation loop, which begins at the equator where air is warmed.

On the left side of entrance, vorticity is negative. There is a large-scale subsidence occurred in this area.

Ozone Concentration

Summary

High concentration ozone was observed right above the atmospheric boundary layer (i.e. 2-4 km above ground level). The month-height cross section shows a significant contribution of the stratospheric intrusion.

WRF-Chem model is capable of simulating the STE process. The model result is improved after using MOZART outputs as initial and boundary conditions for the simulation.

The case is a typical stratosphere intrusion case. It was associated with the activity of sub-tropic jet stream and Hong Kong was located at the entrance of jet with large-scale subsidence.

The WRF-Chem model shows similar results to the ECMWF reanalysis data.

Future work

Quantify the STE Flux by Wei Formula

Stratosphere - Troposphere air Mass flux exchange:

$$F(m) = \frac{1}{g} \left(-\omega + V_h \cdot \nabla P_{tp} + \frac{\partial P_{tp}}{\partial t} \right) = \left(-\frac{\omega}{g} + \frac{1}{g} V_h \cdot \nabla P_{tp} + \frac{1}{g} \frac{\partial P_{tp}}{\partial t} \right)$$

 ω : Vertical velocity P_{tp} : Tropopause pressure *V_h* : Horizontal wind*g*: Acceleration of gravity

- <u>First term</u>: caused by vertical movement of air
- <u>Second term</u>: caused by horizontal movement of air
- <u>Third term</u>: caused by movement of tropopause

THANK YQU!