

Field test of a portable flux-gradient system for measuring methane emission from fish ponds

Zhao Jiayu 2015.08.14

Outline

- Background
- Objectives
- Methods
- Results and Discussion
 - 1. Zero-gradient test result
 - 2. Flux-gradient observation result: CH₄
 - 3. Flux-gradient observation result: F_c , LE
- Conclusions

Background

- \triangleright CH₄ is an important greenhouse gas, and the global warming potential of CH₄ is 25 times that of CO₂ (Forster et al., 2007).
- Inland waters are thought to be important natural sources of methane (Bastviken et al., 2004); in recent years, the research of greenhouse gas in the inland waters mainly focused on lake, reservoir, river, etc. Pond is a part of inland waters, but documentation of emissions from this source has been limited.
- Ponds are centers of sediment accumulation characterized by organic-rich clays. The movements of animals can trigger CH₄ bubbling/ebullition in the Lagoons (Gondwe et al. 2014).
- According to national fishery economic statistical bulletin, the area of pond is 26619 km², which contributes about 43.77% of freshwater aquaculture (2014).

Background: method

Method	Advantage	Disadvantage	
Box chambers/ Anchored funnels	1.Easy-to-operate2. Low cost3. Ebullition (AF)	 Short measurement Strong labor 	
Eddy covariance	1.Directly and fast response 2.Less interference for study site	 Density corrections Self-heating effects 	
Water equilibrium method	Multiple sites	Uncertainty for the <i>k</i>	
Flux-gradient method	 Simultaneously measure the flux of H₂O, CO₂, and CH₄; Negligibly small density corrections; Resolve small CH₄ gradient and flux; Continuous and noninvasive operation. (Xiao et al., 2014) 		

Objective

> Test the portable flux-gradient system performance.

Examine hypothesis: Pond is an strong source of CH_4 , estimating CH_4 emission flux from fish pond.

Outline

- > Background
- Objectives
- Methods
- Results and Discussion
 - 1. Zero-gradient test result
 - 2. Flux-gradient observation result: CH₄
 - 3. Flux-gradient observation result: F_c , LE
- Conclusions

Site information

Location	Latitude and Longitude	Area	Water depth
Puhao Ecological Garden	32.2417° N , 118.6877° E	3720 m ²	1.5m

A: Dining kitchen $(5^{\circ} - 21^{\circ})$

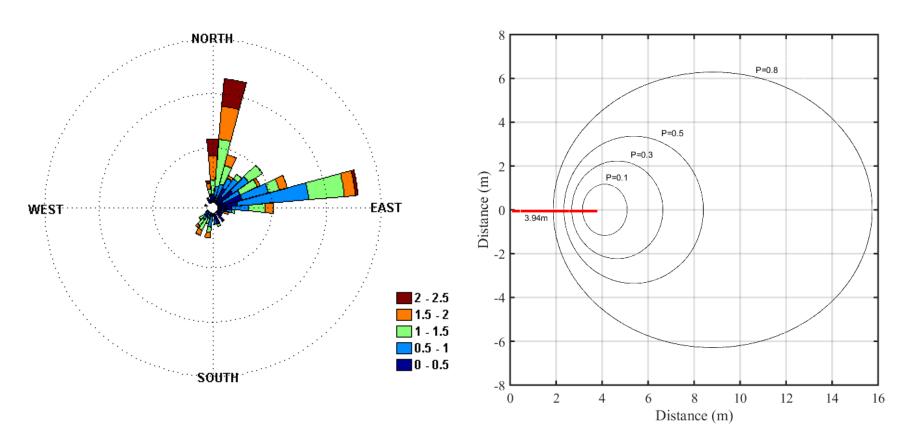
B: Fruiter $(21^{\circ} - 92^{\circ})$

C: Underground parking

D: Fish pond

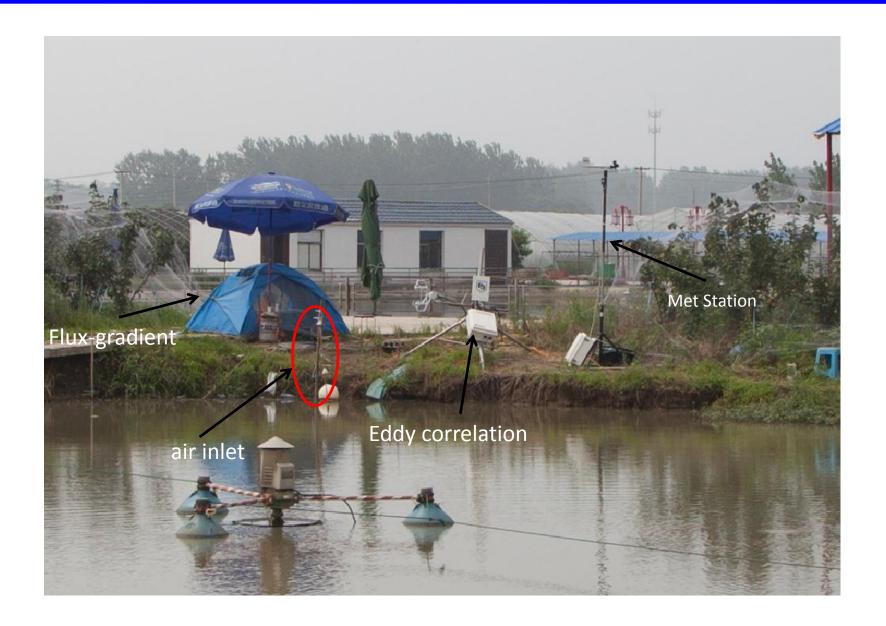
$$(92^{\circ} - 106^{\circ}) (161^{\circ} - 182^{\circ})$$

E: Vinyl house $(106^{\circ} - 161^{\circ})$

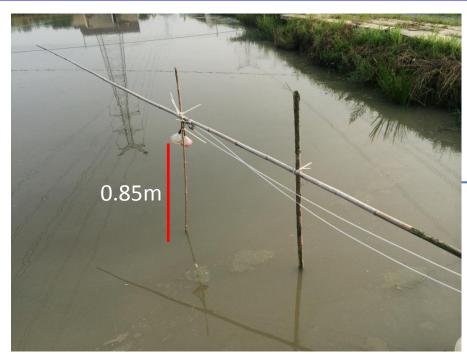

F: Chicken pen

G: Lobster pond $(182^{\circ} - 280^{\circ})$

H: Fish pond


$$(280^{\circ} - 360^{\circ}) (0^{\circ} - 5^{\circ})$$

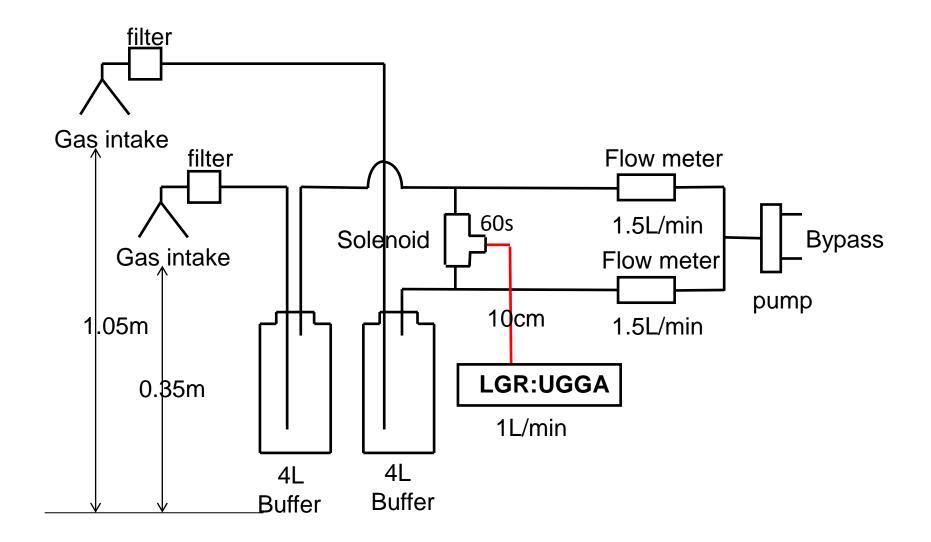
Wind Rose and Footprint

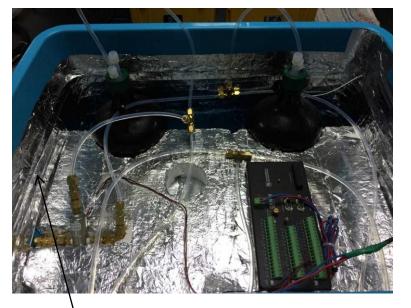


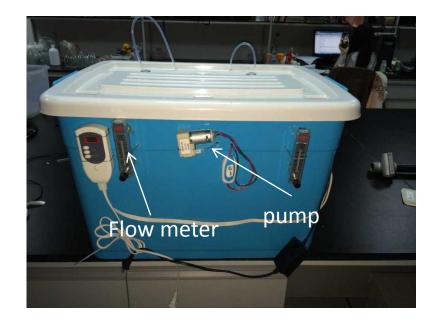
Footprint ----FSAM model (Condition: wind direction: $92^{\circ} - 106^{\circ}$, $\epsilon < 0$)

Instrument information

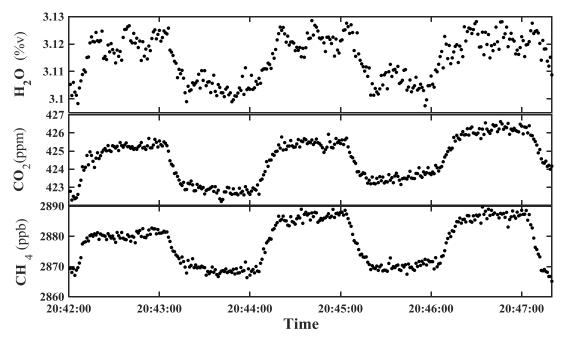
Instrument information




Normal observation (07.15 19:00 – 07.24 24:00)


Zero-gradient (07.14 16:00 – 07.15 17:00)

Flux-gradient system


Constant temperature heating device

Flux-gradient system

UGGR

- Principle: Off-Axis integrated cavity output spectroscopy.
- The instrument signal was recorded at 1 Hz.
- The 100sec precision supplied by the manufacturer for the analyzer is 0.6 ppb for CH₄, 100 ppb for CO₂, and 60 ppm for H₂O.

Step changes in the H_2O , CO_2 , and CH_4 mixing ratio from around 20:42:00 to 20:47:00 on DOY 201, 2015.

Flux-gradient calculation method

$$F = -c\rho_{a}K \frac{r_{2} - r_{1}}{z_{2} - z_{1}}$$

- $F : \text{flux of CO}_2 \text{ (mg m}^{-2} \text{ s}^{-1}), \text{ CH}_4 \text{ (µg m}^{-2} \text{ s}^{-1}), \text{ or H}_2\text{O (g m}^{-2} \text{ s}^{-1})$
- c: unit conversion constant (44/29 for CO_2 , 16/29 for CH_4 , and 18/29 for H_2O)
- K: eddy diffusivity (m² s⁻¹)
- ρ_a : air density (kg m⁻³)
- r: the half-hourly mean dry air mixing ratios \longrightarrow UGGA

Water equilibrium method

Sample Frequency : 3h GC: Agilent 7890B

The sample site of fish pond

(Circle: Edge of pond; Rhombus: in the pond; 2015.07.21 11:30)

GC: Agilent 6890N

Water equilibrium calculation method

$$F = k(C_{w} - C_{eq}) \begin{cases} k/k_{600} = (S_{c}/600)^{-n} \\ k_{600} = 2.07 + 0.215 U_{10}^{1.7} \\ U_{10}/U = ln(10/z_{0})/ln(1.5/z_{0}) \end{cases}$$

- $F: \text{flux of GHGx} \text{ (mol m}^{-2} \text{ d}^{-1}, \text{ or mmol m}^{-2} \text{ d}^{-1})$
- k: gas transfer coefficent (m d⁻¹)
- $C_{\rm w}$: measured GHGx concentration, mol m⁻³ \longrightarrow GC
- ullet C_{eq}^{-1} GHGx concentration in equilibration with the atmosphere.

Ancillary Measurements

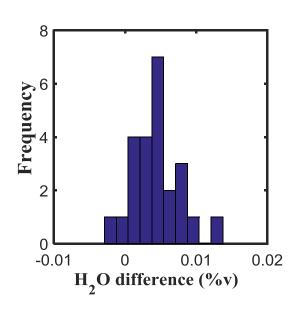
 $-\frac{u_*, \theta_v, H_c}{LE, F_c}$

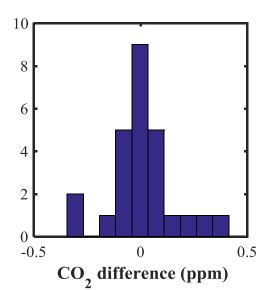
Wind direction Wind speed

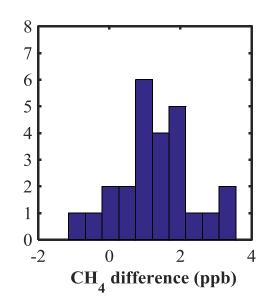
Eddy covariance Orientation: 180°

Meteorological observation Orientation: 0°

Ancillary Measurements

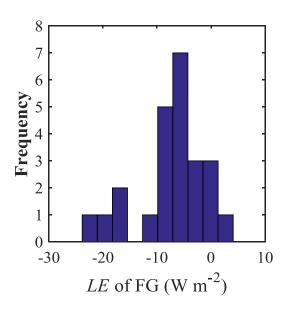

Water thermometer: water temperature (20cm)

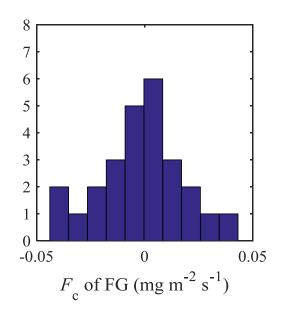

YSI: water temperature (20cm), dissolved oxygen (DO), oxidation-reduction potential (ORP), specific conductance (SC).

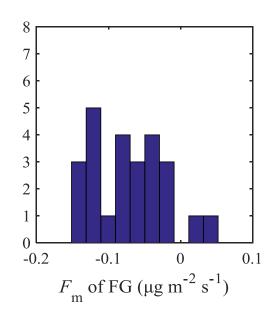

Outline

- > Background
- Objectives
- > Methods
- Results and Discussion
 - 1. Zero-gradient test result
 - 2. Flux-gradient observation result: CH₄
 - 3. Flux-gradient observation result: F_c , LE
- Conclusions

1.1 Frequency distribution of H₂O, CO₂, and CH₄

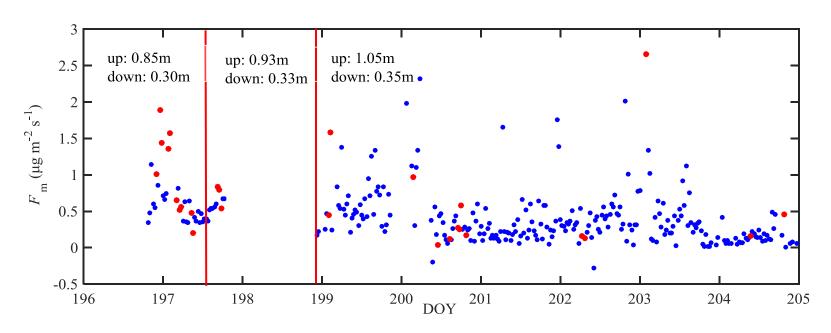






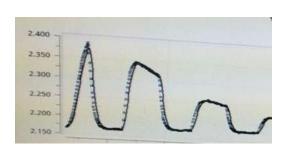
	Mixing ratio difference		
	H ₂ O (%v)	CO ₂ (ppm)	CH ₄ (ppb)
Mean value	4.3×10^{-3}	-0.009	1.30
Standard deviation	0.0034	0.138	1.10
Mean mixing ratio	2.72	423.17	2317
Relative percentage	0.15%	0.002%	0.05%

1.2 Frequency distribution of *LE*, F_c , and F_m

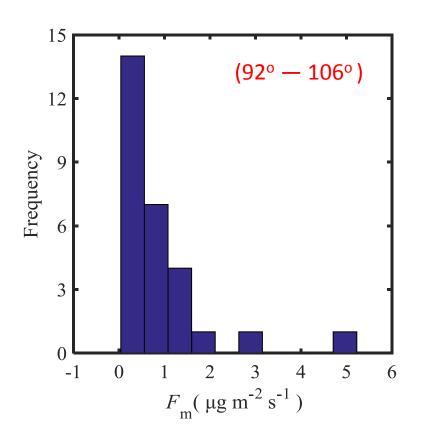


	Flux			V (m² c-1)
	LE (W m ⁻²)	$F_{\rm c} \ ({\rm mg \ m^{-2} \ s^{-1}})$	$F_{\rm m} \ (\mu {\rm g \ m^{-2} \ s^{-1}})$	$K (m^2 s^{-1})$
Mean value	-7.2	0.002	-0.07	0.05
SD	6.5	0.019	0.07	0.01

1.3 Comparison with results of other papers

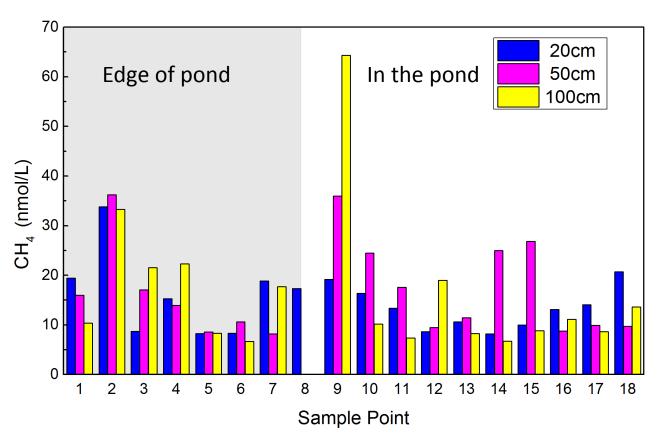

Location	Method	CH ₄	Reference	
MLW	Flux-gradient	0.2 ppb	(Xiao et al. 2014)	
IVILVV	(picarro G1301)	0.016 μg m ⁻² s ⁻¹	(Aldo Ct al. 2014)	
	Closed-chamber	$0.026~\mu g~m^{-2}~s^{-1}$	(2)	
Peatland surfaces	Bowen-ratio methods	$0.6 - 7.08 \ \mu g \ m^{-2} \ s^{-1}$	(Chan et al. 1998)	
Rice paddy field	TDLAS (TGA 100)	0.2 ppb	(Simpson et al. 1995)	
Boreal beaver pond	Gas chromatography (Shimadzu Mini II)	4 ppb	(Roulet et al. 1997)	
Dairy farm	EC system (QCL spectrometer)	0.67μg m ⁻² s ⁻¹	(Kroon et al. 2010)	
Water surfaces	Automatic CH ₄ chamber	0.053μg m ⁻² s ⁻¹	(Duc et al. 2012)	
Fish pond	Flux-gradient	1.3ppb	This study	
	(UGGR 915)	0.07μg m ⁻² s ⁻¹	Tills study	

2.1 Temporal variation of CH₄ emission

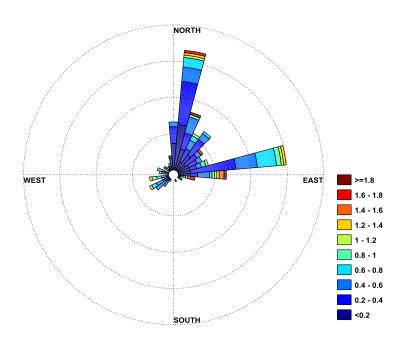


Red point: open fetch; Blue point: limited fetch

2015/07/18 03:30 /199.1458 CH₄ flux: 5.23 μg m⁻² s⁻¹


2.2 Frequency distribution of $F_{\rm m}$

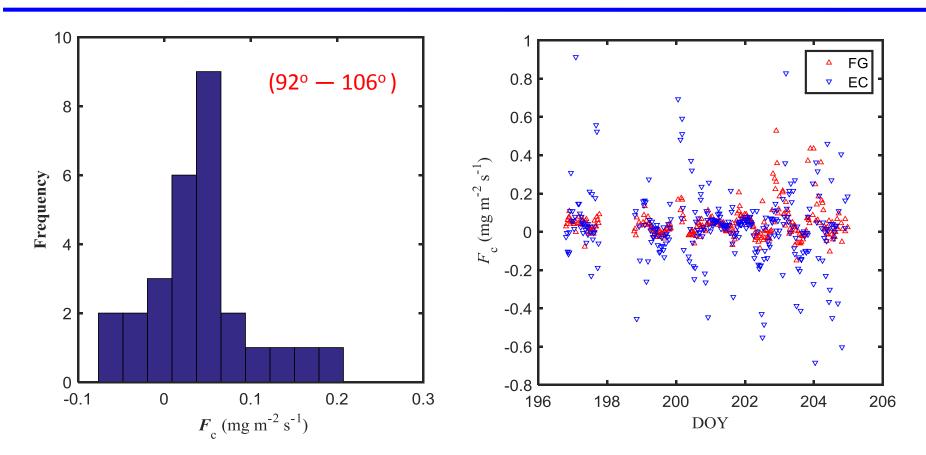
93% of CH₄ half-hourly fluxes were higher in the magnitude than the measurement precision $(0.07\mu g \text{ m}^{-2} \text{ s}^{-1})$.


(μ	F _m ag m ⁻² s ⁻¹	<i>K</i> (m² s ⁻¹)
Mean value	0.91	0.05
SD	1.05	0.02

2.3 Comparison with water equilibrium results

- 1. Comparison with flux-gradient calculation result, the water equilibrium calculation result (0.002µg m⁻² s⁻¹) was 445 times lower (This study).
- 2.Boundary model estimates were 5–30 times lower leading to a strong underestimation of methane fluxes from aquatic systems (J. Schubert et al. 2012).

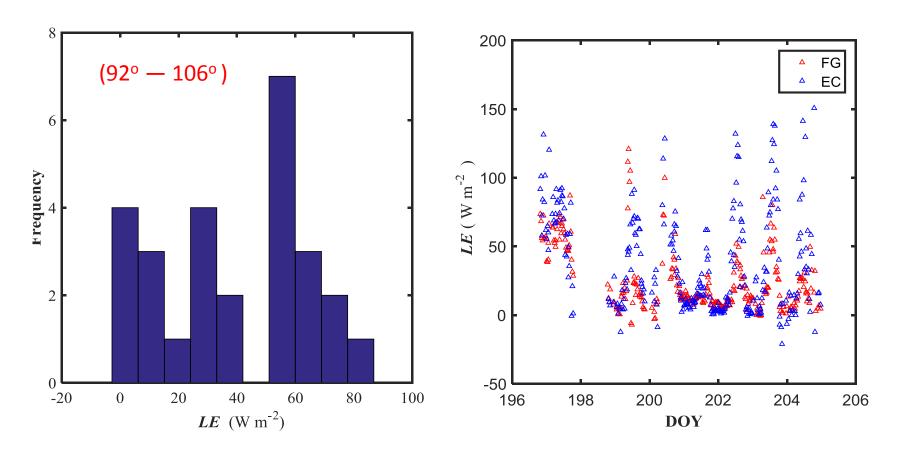
2.4 Comparison with other zones near the ponds


Wind rose diagrams of CH₄ flux from different zones near the ponds

Surface	Range (µg m ⁻² s ⁻¹)	Mean value (μg m ⁻² s ⁻¹)
Dining kitchen	(0.01, 1.44)	0.27
Fruiter (park, WC)	(0.01, 2.33)	0.38
Fish pond	(0.04, 5.23)	0.91
Vinyl house	(0.17, 0.46)	0.32
Lobster pond	(0.20, 1.38)	0.60
Fish pond	(-0.20, 2.32)	0.47

2.5 Comparison with results of other papers

Location	Method	Flux (μg m ⁻² s ⁻¹)	Reference
MLW (2012.05 ~ 2014.01)	MLW (2012.05 ~ 2014.01) Flux-gradient		(Xiao et al. 2014)
BFG (2014.5~ 2014.8)	EC (Model Li-7700)	0.367	Xiao report
Taihu	Water equilibrium	0.017	Zhang report
Min jiang Shrimp pond	el l	0.28	/v
Culturing pond	Floating chamber	1.59	(Yang et al. 2012)
Pond (Linköping University)	AFC	0.14	(Duc et al. 2012)
Fish mand (Dubas)	Flux-gradient	0.91	This study
Fish pond (Puhao)	Water equilibrium	0.002	This study
Lagoons (Delta)	Static chamber	4.69	(Gondwe et al. 2014)
Nihe reservoir (summer)	Floating chamber	3.74	(Yu et al. 2012)
Ditches	Floating chamber	9.36	(Schrier et al. 2011)


3.1 Flux-gradient test result : F_c

- 1. 90% of CO_2 half-hourly fluxes were higher in the magnitude than the measurement precision (0.019mg m⁻² s⁻¹).
- 2. Comparison with flux-gradient result (0.042), the water equilibrium result (0.009 mg m⁻² s⁻¹) was 5 times lower (This study).

y =
$$0.40(\pm 0.05)x + 0.03(\pm 0.001)$$

(R²=0.02, p < 0.05)
where y is the FG flux; x is EC flux

3.2 Flux-gradient test result: *LE*

80% of H_2O half-hourly fluxes were higher in the magnitude than the measurement precision (6.5W m⁻²).

y =
$$0.63(\pm 0.05)x + 0.81(\pm 2.12)$$

(R²=0.42, p < 0.001)
where y is the FG flux; x is EC flux

Outline

- > Background
- Objectives
- > Methods
- Results and Discussion
 - 1. Zero-gradient test result
 - 2. Flux-gradient observation result: CH₄
 - 3. Flux-gradient observation result: F_c , LE
- Conclusions

Conclusions

- Results of zero-gradient test show that the flux measurement precision of 6.5 W m⁻² for water vapor, 0.019 for CO₂ mg m⁻² s⁻¹, and 0.07 for CH₄ μ g m⁻² s⁻¹.
- ◆ During the flux-gradient measurement period, 80%, 90%, and 93% of H₂O, CO₂, and CH₄ half-hourly fluxes were higher in the magnitude than the measurement precision. According to the zero-gradient test results, the flux-gradient system had adequate precision for the fish pond measurement.
- \bullet The mean CH₄ flux from fish pond is 0.91 µg m⁻² s⁻¹.

Future work

- 1. Comparison LE and F_c between EC and FG by using MBR method.
- 2. Find the reason about the times between flux-gradient results and water equilibrium results.
- 3. Analyzing the relationship between CH_4 flux and water quality parameter.
- 4. Summary of experiments.

Thomas you