

A discussion on the paper " Large contribution to inland water CO_2 and CH_4 emissions from very small ponds"

Meredith A.Holgerson and Peter A.Raymond

Zhao Jiayu 2016.04.22

Outline

1.Background

- > 1.1 The importance of inland water
- > 1.2 Why might small ponds be very important?

2.Method

> 2.1 Estimating gas flux for each water body

- > 2.2 Estimating of the global size distribution of lakes and ponds
- > 2.3 Upscaling to global carbon flux

3.Results and discussion

3.1 CO₂ and CH₄ concentration in relation to lake surface area and latitude
 3.2 Estimated global flux of CO₂ and CH₄ for each lake size class
 3.3 Uncertainty in estimated values

4.Our work

1. Background

- 1.1 The importance of inland water
- Inland waters are an important component of the global carbon cycle. Yet, accurately estimating inland water carbon budgets remains challenging.

So far, upscaling estimates for carbon budgets exclude very small ponds less
 than 0.001 km² in surface area because of uncertainty in their global distribution.

1.2 Why might small **ponds**(< 0.001km²) be very important?

1. The vast majority of ponds and lakes are small:

90% of all ponds and lakes are <0.01km² (Downing et al.2006; Verpoorter et al. 2014), not including very small ponds (0.0001 - 0.001 km²) which could number as high as 3.2 billion and cover 0.8 million km² of surface area (Downing et al. 2010).

2. Rich biodiversity, High productivity, small area, shallow depth

Regardless of their areal extent, small ponds may be important for their contributions to global aquatic elemental fluxes, biodiversity, and productivity (Verpoorter et al. 2014).

3. The level of supersaturation: CO₂:19-fold, CH₄: 504-fold

Research surveys: Six ponds (forested ponds in Connecticut, USA) : For CO_2 and CH_4 gases, this level of supersaturation in the pond is among the highest reported for lentic freshwaters. (Holgerson et al. 2015)

Objectives

Estimating the CO₂ and CH₄ emission flux and ratio from small ponds

2. Method

2.1 Estimating gas flux for each water body

$$F = k(C_{\rm w} - C_{\rm eq})$$

- F : Flux of CO₂ or CH₄ (mmol m⁻² d⁻¹)
- k : Gas transfer coefficient (m d⁻¹)
- $C_{\rm w}$: CO₂ or CH₄ concentration dissolved in the surface water, µmol l⁻¹

----literature research :427 lakes and ponds globally $(2.5 m^2 - 674 km^2)$

• C_{eq} : CO₂ or CH₄ concentration in water that is in equilibration with the atmosphere, µmol l⁻¹

---- Mauna Loa Observation sites

2.1 Estimating gas flux for each water body-----Gas exchange velocity

Size class	<0.001	0.001 - 0.01	0.01 - 0.1	0.1 - 1	1 - 10	10 - 100	>100		
k ₆₀₀	0.36	0.48	0.57 0.80		0.85	1.09	1.15		
A. >0.01km ² : Courtesy of Raymond, 2013 ; the calculate method as follows:									
1. $k_{600} = 2.07 + 0.215 U_{10}^{-1.7}$ (Cole and Caroco,1998) k_{600} : the gas transfer coefficient adjusted to Schmidt number 600, U_{10} : the wind speed at 10m height									
2. $k = \eta(\varepsilon v)^{1/4} S c^{-n}$ (Read et al. 2012)									
η : the constant of proportionality, v: the kinematic viscosity of water, Sc: the Schmidt number of the gas n: the coefficient representing surface conditions.									

B. 0.001 – 0.01 km² : Courtesy of Read, 2012

C. <0.001 km²: the average k_{600} from four study ponds using a propane trace gas -----(Author's study)

2.2 Estimate of the global size distribution of lakes and ponds

Size class	<0.001	0.001 - 0.01	0.01 - 0.1	0.1 - 1	1 - 10	10 - 100	>100
Surface area (km ²)	147763 861578	406575.9	675233.8	984650.6	782073.8	597789.3	2024015.8

A. > 0.002 km^2 : Using the high-resolution satellite images to identify.(Verpoorter et al. 2014)

B. $0.001 - 0.002 \text{ km}^2$: The author assumed that lakes between 0.001 and 0.002 km² comprised 10% of lakes in the entire size class, which equaled 9988889 lakes.

C. $< 0.001 \text{ km}^2$:

Using the Monte Carlo analysis by using a lower and an upper bound estimate.

For the lower bound: using the log-log linear regression:----547268724 lakes

number for lakes(ln)=-0.71 × size class +8.74, $R^2 = 0.996$

For the upper bound: using the Pareto distribution:---- 3.19×10^9 lakes

2.3 Upscale to global carbon flux

Table 1 | Characteristics of surface area, gas exchange rates, and gas concentrations and fluxesfor each lake size class

Size class	Surface area	k600		CO ₂			CH ₄				Ratio CO ₂ :	CH4	
(km²)	(km ²)		n	Conc. (µmol I ⁻¹)	Flux (mmol C m ⁻² d ⁻¹)	n	Conc. (µmol I ⁻¹)	Flux (mmol C m ⁻² d ⁻¹)	n	Conc.	Conc. (CO _{2eq})	Flux	Flux (CO _{2eq})
< 0.001	147,763	0.36	50	133.99	35.18	50	7.57	2.28	50	92.22	10.12	15.46	1.70
	861,578			(16.69)	(5.21)		(1.64)	(0.51)		(33.21)	(3.64)		
0.001-0.01	406,575.9	0.48	22	70.29	21.21	20	1.70	0.65	14	157.42	17.28	32.49	3.57
				(14.8)	(5.88)		(0.49)	(0.16)		(48.99)	(5.38)		
0.01-0.1	675,233.8	0.57	111	68.79	21.57	86	0.68	0.28	60	399.14	43.81	77.13	8.46
				(4.4)	(1.85)		(0.09)	(0.05)		(49.66)	(5.45)		
0.1-1	984,650.6	0.80	110	58.05	23.87	86	0.36	0.16	63	483.46	53.06	151.68	16.65
				(4.1)	(3.03)		(0.07)	(0.04)		(50.96)	(5.59)		
1-10	782,073.8	0.85	45	57.83	22.42	43	0.24	0.12	33	968.53	106.30	192.50	21.13
				(3.3)	(1.88)		(0.08)	(0.06)		(124.73)	(13.69)		
10-100	597,789.3	1.09	10	47.27	20.90	18	0.20	0.10	10	1,361.34	149.41	204.21	22.41
				(5.7)	(4.08)		(0.06)	(0.05)		(233.10)	(25.58)		
>100	2,024,015.8	1.15	1	32.63	11.49	6	0.13	0.06	0	-		-	-
							(0.04)	(0.04)					

Attention: Concentration ratios are calculated for each lake; flux ratios are averages for the size class. Numbers in parentheses represent standard error.

Outline

1.Backgroud

- > 1.1 The importance of inland water
- > 1.2 Why might small ponds be very important?

2.Method

- > 2.1 Estimating gas flux for each water body
- > 2.2 Estimating of the global size distribution of lakes and ponds
- > 2.3 Upscaling to global carbon flux

3.Results and discussion

- > 3.1 CO₂ and CH₄ concentration in relation to lake surface area and latitude
- > 3.2 Estimated global flux of CO_2 and CH_4 for each lake size class
- > 3.3 Uncertainty in estimated values

Our work

3. Results and Discussion

3.1 CO₂ and CH₄ concentration in relation to lake surface area and latitude

Table 2 Relationship between gas concentrations, lake or pond surface area and latitude.

Equation	Intercept	Area (In)	Latitude	Latitude ²	Area (In) × Latitude _a	F	p	R ²
$ln(CO_2) \sim ln(area) \times latitude_a$	4.44	-0.061	-0.055	-0.0042	0.008	49.1	< 0.001	0.36
+ latitude ²	(0.06)	(0.011)	(0.005)	(0.0005)	(0.0014)	(4, 343 DF)		
$\ln(CH_4) \sim \ln(area) + latitude$	4.25	-0.278	-0.080	-	-	213.2	< 0.001	0.58
	(0.440)	(0.017)	(0.007)	-	-	(2, 306 DF)		
Ratio (In CO $_2$ /In CH $_4$) \sim	5.20	0.190	0.063	-0.0081	0.0077	109.2	< 0.001	0.65
$ln(area) \times latitude_a + latitude_a^2$	(0.090)	(0.022)	(0.012)	(0.0011)	(0.0034)	(4, 225 DF)		

Latitude_a : values are centred around the mean.

Relationship:

 $1.\ln CO_2 = -0.061 \ln(Area) - 0.055 Latitude - 0.0042 Latitude_a^2 + 0.008 \ln(Area) \times Latitude_a + 4.44$

2. *ln*CH₄=-0.278 *ln*(*Area*) -0.080 *Latitude*+ 4.25

3. Ratio $(lnCO_2/lnCH_4) = 0.190ln(Area) + 0.063Latitude - 0.0081Latitude_a^2 + 0.0077 ln(Area) \times Latitude_a + 5.20$

3.2 Estimated global flux of CO_2 and CH_4 for each lake size class

3.2 Estimated global flux of CO_2 and CH_4 for each lake size class

1. Global CO_2 flux is only **1.5 times higher** than global CH_4 flux **in very small ponds**.

2. Global CO_2 flux is only **19 times higher** than global CH_4 flux **in very largest lakes**.

Only focused on diffusive CH₄ flux; Not considered the CH₄ ebullition;

3.3 Uncertainty in estimated values

Ebullition Analysis

→ Low sample size (47 water bodies) small range (0.002, 1.449 km²)

The relationship between ebullition to surface area was weak

(linear regression, $R^2=0.19$, p=0.02)

No significant relationship between the ratio of diffusion and ebullition and lake surface area (linear regression, R^2 =0.002, p= 0.56)

Uncertainty in k_{600} Values

- 1. Much uncertainty remains regarding k_{600} estimates from convection and wind speed.
- 2. Used the k_{600} was daily average, we may underestimate gas flux.
- 3. using eddy covariance techniques typically calculate large k_{600} estimates than those predicted from gas concentration and wind speed.

Uncertainty in Global Size Distribution of Very Small Ponds(< 0.001 km²)

The upper bound: Parote distribution

It can **accurately estimate** the number of lakes **in some flat regions** in Earth, but **overestimates** the number of lakes **in mountainous regions**.

Conclusion

Notably:

Ponds from the smallest size class(<0.001km²) have a disproportionately large contribution to carbon flux relative to their size. It play a critical role in geochemical cycling and represent an important contribution to natural carbon cycling in inland waters.

(surface area:8.6%; CO₂ emission:15.1%; CH₄ emission:40.6%)

On-going work:

Clearly, more research on **the global distribution of small ponds** is needed for upscaling, which will require capitalizing on new technologists to map small ponds.

Our work

Measuring Methane Emission from Fish Ponds with Micrometeorological and Water Equilibrium Methods

(1) Quantify the CH₄ emission from small ponds (Diffusive flux + Ebullition flux)
(2) Identify critical environmental factors that regulate the emission intensity.

Study Site

Location	Latitude and Longitude	Area	Water Depth	
Guandu Fish Pond A	31.97° N , 118.25° E	6912 m ²	0 m	

Fish Pond A: (35°, 67°)

Fish Pond B: (68°, 140°)

Fish Pond C: (141°, 216°)

Fish Pond D: (217°, 312°)

Instrument information

Flux-gradient system (UGGA)

Eddy covariance system (EC150, LI-7700)

MET system

Instrument information---- Flux Gradient

Instrument information----Eddy covariance

Eddy covariance Orientation: 42° The horizontal distance between EC150 and LI-7700 is 35 cm.

Preliminary results (CH₄ Flux)

Table 3 The mean and standard deviation of CH₄ flux from all wind direction

	$F_{\rm m}$ -win (µg m ⁻² s ⁻¹)	<i>F</i> _m -spr (μg m ⁻² s ⁻¹)	F _m -LI7700 (μg m ⁻² s ⁻¹)
Mean value	0.15	0.19	0.17
SD	0.21	0.33	0.29

Limited fetch: (35°,67°)

Table 4 The mean and standard deviation of CH₄ flux from limited direction (35°,67°)

	<i>F</i> _m -win (μg m ⁻² s ⁻¹)	<i>F</i> _m -spr (μg m ⁻² s ⁻¹)	F _m -LI7700 (μg m ⁻² s ⁻¹)
Mean value	0.14	0.40	0.36
SD	0.29	0.58	0.50

 F_{m} -win: CH₄ flux observed results in winter using FG method ;

 $F_{\rm m}$ -spr: CH₄ flux observed results in spring using FG method ;

 $F_{\rm m}$ -LI7700:CH₄ flux observed results in spring using EC method ;

On-going Work

1. Continuing the spring experiment using box-chamber method and water equilibrium method in May.

2. Due to the dry fish pond, the water parameters were not measured in the winter experiment. We will measure water parameters in the spring experiment to investigate the relation between CH_4 flux and environmental factors.

