

Simultaneous online monitoring of inorganic compounds in aerosols and gases during spring in Nanjing Northern Suburb

Zhang yaunyaun 2016.7.15

Outline

- Introduction
- Experimental
- Results and discussion
- Conclusions
- Future work

Introduction

- The most commonly used procedures for collecting aerosols are filter-based methods. Filter measurements may have become routine but because of their low accuracy it is not simple to quantify ambient aerosols.
- Furthermore, the atmospheric evaporation of semi-volatile aerosol species and the possible loss of some compounds due to surface reactions due to long time-scale sampling periods have been reported.
- An online analyzer for monitoring for aerosols and gases (MARGA) is one of the latest measurement systems for semi-continuous analysis of gases and soluble ions in aerosols.

MARGA Instrument

On-line Monitor for AeRosols and Gases in ambient Air (MARGA)

- Gases
- \blacksquare NH₃
- HNO₂
- HNO₃
- HCl
- SO_2

- Aerosols
- NH₄⁺
- K⁺ NO₃⁻ Ca²⁺ SO₄²⁻
- Mg²⁺

- ■Time solution
- 1hour

MARGA Instrument

Fig.1 MARGA 1S

Gases

Fig. 2 Gases collector

Aerosols

Fig.3 aerosol collector

- Sampling time: 2016.3.3-2016.5.16
- Sampling place: Meteorological observation field, NUIST
- Samples: PM_{2.5}

Table 1 Summary of data derived from instruments

Instruments	Parameter	Data
MARGA	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
THERMO	PM2.5	Valid data :2016.3.3-2016.4.19
ENVIS	Meteorological parameters	Valid data :2016.3.3-2016.5.16

Variation of PM2.5 chemical compositions

Fig. 4 Time series of (a) wind direction and precipitation (mm), (b) temperature ($^{\circ}$ C) and RH ($^{\circ}$) (c) mass concentration (μ g/m3) of PM2.5 and major water-soluble ions during the study period

Cation-Anion balance

Cation:

$$\Sigma + = Na^{+}/23 + 2 Mg^{2+}/24.3 +$$

$$2 Ca^{2+}/40 + NH4^{+}/18 + K^{+}/39.1$$

Anion:

$$\Sigma$$
- = Cl⁻/35.45 + 2 ·SO₄²⁻/96 +

$$NO_3^{-}/62$$

Fig.5 The relationship of cation and anion

Fig.6 The variability of water-soluble ion fraction (%) and probability of total mass concentration (%)

Fig.7 Box-and-whisker plots showing monthly variations of inorganic compounds during sampling period.

HNO₂ and HNO₃

Fig.8 Gaseous HNO2 and HNO3 concentrations measured with MARGA during the whole sampling period (time resolution: 1 h)

- Transformation of HNO₃
 - 1, gas phase reaction:

$$NO_2(g) + OH(g) + M \rightleftharpoons HNO_3(g) + M$$

 $NO_2 + O_3 \rightleftharpoons NO_3 + O_2$
 $NO_3 + NO_2 + M \rightleftharpoons N_2O_5 + M$

2. heterogeneous conversion:

$$N_2O_5 + H_2O \rightleftharpoons 2HNO_3$$

 $RH/RCO + NO_3 \rightleftharpoons HNO_3 + (R/RCO)$

Fig.9 Diurnal variation of Gaseous HNO₂, HNO₃ and NO₂ concentrations

• SO₂

Fig. 10 Time series of mass concentration (μg/m3) of SO₂

• SO₂

Fig.11 wind rose diagram and diurnal variation of mass concentration ($\mu g/m3$) of SO_2

Secondary components

Fig.12 Diurnal variation of Gaseous NH₃ and secondary ions

Oxalate

Fig.13 Diurnal variation of C₂O₄²⁻ concentration

Other inorganic compounds

Fig.14 Diurnal variation of the mass concentration of Other inorganic compounds

SOR and NOR

The sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) are available indicators used to quantitatively characterize the secondary transformation reactions of SO₂ and HNO₃.

$$\mathsf{SOR} = [\mathsf{SO_4^{2-}}]/[\mathsf{SO_4^{2-}} + \mathsf{SO_2}]$$

$$NOR = [NO_3^-]/[NO_3^- + HNO_3]$$

Fig. 15 Time series of mass concentration (μ g/m3) of SO₂

Table 2 information of the SOC during the sampling period

-			
	Mar	Apr	May
Mean	0.47	0.44	0.50
Min	0.10	0.09	0.09
MAX	0.94	0.92	0.97
Ratio(>0.1)	0.99	0.99	0.97
		0.,,,	· · · · ·

Acidity of aerosols

The neutralization ratios (NR) were calculated in order to estimate the acidity of atmospheric aerosols. A ratio value of 1.0 would indicate neutralization of HNO_3 and H_2SO_4 by atmospheric NH_3 , while NR < 1.0 imply the likely presence of acidic aerosols.

$$NR = [NH_4^+]/[NO_3^- + 2SO_4^{2-}]$$

Fig. 16 Time series of NR during the sampling period

Table 3 Pearson correlation coefficients between major ions during whole field campaign

	1 0								
	Cl ⁻	NO ³⁻	SO_4^{2-}	$C_2O_4^{2-}$	Na ⁺	NH4 ⁺	K^+	Mg^{2+}	Ca^{2+}
Cl ⁻	1	.516**	.615**	.345**	.517**	.688**	.781**	.276**	.417**
NO_3^-		1	.584**	.583**	.242**	.885**	.395**	.169**	.249**
SO_4^{2-}			1	.348**	.269**	.884**	.436**	.240**	.242**
C2O ₄ ²⁻				1	.254**	.513**	.463**	.223**	.343**
Na^+					1	.294**	.561**	.239**	.397**
$N{H_4}^+$						1	.484**	.237**	.279**
K^+							1	.231**	.489**
$M{g_2}^+$								1	.339**
Ca_2^+									1

^{*}p=0.05;**p=0.01

Wet deposition

Table 4 Variation of the mass concentration (µg/m 3of ions during the whole rainfall events

Date	Duration (h)	precipitation (mm)	event	Cl-	NO3-	SO ₄ ²⁻	C ₂ O ₄ ²⁻	Na ⁺	NH ₄ ⁺	K+	Mg^{2+}	Ca ²⁺
5.4 27			before	1.87	19.15	9.35	5 0.44	0.33	9.64	0.87	0.07	0.48
	30.9	during	1.69	10.42	2 15.02	0.33	0.28	9.03	0.50	0.03	0.20	
		after	0.37	10.97	7.52	0.37	0.06	5.98	0.26	0.05	0.17	
		Deposition rate (%)	80.28	42.71	19.57	7 15.95	80.95	37.89	70.53	36.99	63.75	
		12.9	before	5.38	33.19	15.91	0.84	0.55	15.79	3.59	0.05	0.28
			during	1.45	12.45	5 10.45	0.67	0.20	7.66	0.45	0.02	0.15
4.26	35		after	0.05	15.38	8.39	0.71	0.13	7.24	0.53	0.04	0.15
		Deposition rate (%)	99.14	53.65	5 47.25	5 15.91	76.07	54.15	85.33	9.42	46.06	
			before	1.74	6.93	3 11.92	0.89	0.20	6.15	0.80	0.04	0.47
			during	0.29	4.33	6.41	0.70	0.06	3.50	0.32	0.02	0.26
5.2 17	31.2	after	0.29	3.55	4.25	0.91	0.08	2.25	0.18	0.03	0.41	
		Deposition rate (%)	83.38	48.69	64.37	7 -1.75	61.54	63.47	77.26	26.76	11.54	
		before	0.69	22.90	19.93	3 1.56	0.14	14.15	0.62	0.04	0.06	
		9 35	during	0.51	7.47	6.20	1.06	0.03	4.19	0.19	0.02	0.04
5.15 19	19		after	0.62	12.20	6.85	5 1.14	0.02	5.71	0.23	0.02	0.14
		Deposition rate (%)	9.81	46.74	4 65.63	3 27.16	85.65	59.65	62.27	55.56	-109.63	

Conclusions

- Data analysis showed an average trend of $SO_4^{2-}>NO_3^{-}>NH_4^{+}>Cl^{-}>K^+>Na^+>Ca^{2+}>Mg^{2+}$ for aerosol species and $SO_2>NH_3>HNO_2>HNO_3>HCl$ for gases.
- The trend of HNO₂ shows surprisingly significantly higher concentration values compared to HNO₃, lower concentrations of HNO₂ during the day which rises to higher levels during the night.
- Monthly variations of ions concentration are analyzed, that the concentrations of most ions are higher in March and lower in April and May, except for Ca^{2+} and $c_2o_4^{2-}$.

Conclusions

- High SO2 concentrations and high SOR and NOR values directly resulted in a large amount of secondary sulfate and nitrate particles in the atmosphere at the Nanjing sampling site. However, localized meteorological conditions must also play a main role in the formation processes of these secondary particulate pollutants.
- Most of the time, the aerosols are acidic, this would suggest that all particulate ammonium is of the form ammonium sulfate and bisulfate.

Future work

- Do further analysis on the effect of meteorological elements on inorganic components in aerosols and gases.
- More detailed analysis of gas-particle conversion processes

Thank you