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1. Background



* The CO, emission contributed by fos

sil fuel combustion

in Yangtze River Delta (YRD) can break original

carbon balance 1n this area.

* Monitoring CO, concentration and its 13C isotopic
composition by high frequency instrument and energy-
use statistics method, we can calculate CO, flux density

and partition the CO, contributors. T
us to understand the different roles p!

and anthropogenic CO, sources in ur

h1s can greatly help

ayed by natural

DAN arcas.



5°C can be used as a good carbon tracer.

Keeling Plot (D. E. Pataki, et al., 2003)
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Fig. 1. Monthly CO, and 6 13C at MLO in 2012.
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The approach of monthly CO, flux calculation

Fy,=F,.+F.+F, (Eq.5)
oyF, = ]TF +o F.+0,F, (Eq.6)
=0 13CS Mixing ratio =0%o =-26.2%o

Energy-use statistics

Fy: Net CO, flux density (CO,mg-m2-s!)
Fp: Fossil fuel combustion CO, flux density
F.: Clink production CO, flux density

Fp: Plant CO, flux density

O : Isotope ratio



2. Objective
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Fig. 4.The time series of 6 13C in Nanjing in 2013.



1. Calculate monthly 0 13Cg in Nanjing by Keeling and Miller-Tans
method.

2. Calculate CO, fossil fuel combustion estimated with the IPCC
inventory method and its mixing 6 13C .

3. Produce a clink/cement CO, flux density map of Eastern China.

4. Determine the source region by using back trajectory analysis
and WPSCEF.

5. Partition the total CO, emission source into fossil fuel
combustion, cement production and plant respiration.

6. Analyze the sensitivity and uncertainty of mean contributions
by each fractional CO, flux in YRD.



3. Material and Method



Fig. 5. CO, and its stable isotopic composition analyzer (Picarro G1101-1)
and calibration system in Nanjing.



Table 2. Dataset of Picarro.

Sites Period of time

NUIST 26t Feb, 2013~9% August, 2014

Table 3. Cycling of measurement.

Gases Lasting Time (min)
Standard gas 1 5
Standard gas 2 5

Ambient air 170

Table 4. Information of standard gases.

Gases CO, concentration (ppm) 6 BC*(%o)
Standard gas 1 380 -29.75+ 0.27
Standard gas 2 500 -30.01 = 0.18

* (n=41) Results from CAAS and CAFS.



Data processing

1. Remove methane data

2. Remove 3 minutes data after switchover (about 44 data)

3. Filter outliers
4. Calibrate raw data by 2-point standard gases calibration

5. Average data into 1 hour
6. Calculate 6 3C¢ by Miller’s method.



4. Preliminary results



4.1. 0 3Cq calculated by Bowling
and Miller-Tans method
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Table 5. Monthly variation of ¢ 3C..

Months Miller Keeling
6 13C (%) R 6 13C (%) R

Feb,2013 -25.566 +£0.77 -0.985 -25.878 = 0.783 0.961
Mar,2013 -24.451 +£0.499 -0.958 -25.104 = 0.524 0.892
Apr,2013 -25.441 +£0.505 -0.963 -26.066 = 0.538 0.904
May,2013 -25.183 +£0.492 -0.969 -25.6905 £ 0.506 0.923
Jun,2013 -25.572 +£0.659 -0.935 -26.544 + 0.682 0.851
Jul,2013 -24.150 +£0.614 -0.942 -24.910 = 0.638 0.882
Aug,2013 -24.667 +1.001 -0.877 -26.396 = 1.032 0.761
Sep,2013 -22.176 = 0.563 -0.938 -22.927 + 0.899 0.828
Oct,2013 -24.029£0.423 -0.972 -24.649 = 0.444 0.925
Nov,2013 -23.028 £0.66 -0.952 -23.923 + 1.238 0.878
Dec,2013 -23.514£0.326 -0.981 -25.9234 £ 0.331 0.948
Jan,2014 -24.3551£0.464 -0.971 -24.888 + 0.42 0.924
Feb,2014 -23.432£0.605 -0.964 -24.093 £ 0.478 0.905
Mar,2014 -23.870510.44 -0.967 -24.463 = 0.465 0.929
Apr,2014 -24.2421+0.41 -0.972 -24.756 £ 0.426 0.868
May,2014 -25.324£0.587 -0.945 -25.132 = 0.593 0.887
Jun,2014 -22.791+0.489 -0.955 -23.498 £ 0.501 0.783
Jul,2014 -21.626 £ 0.656 -0.907 -22.944 £ 0.679 0.804
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4.2. CO, tossil fuel combustion and 1ts 6 13Cq



Table.6. CO, emission factors in IPCC.

Carbon Sources Emission factors
Coal 1.98
Coke 3.02
Crude O1l 3.1
Gasoline 3.18
Kerosene 3.15
Diesel 3.18
Furnace 3.13
Natural Gas 21.84

Clink 0.52
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F.inYRD:0.1744 (CO, mg-m-s'!), in this study.
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Fig. 9. The fractional contribution of fossil combustion in Nanjing in 2012.




Table.7. §”C in Fossil.

Carbon Sources 57 C (%o) Reference
Coal -23.97 Xu YC,1990
Coke -24 Xu YC,1990

Crude O1l -28.16 Xu YC,1990
Gasoline -28.4 S.E. Bush,2007

Kerosene -29.3 Andes,2000
Diesel -28.3 S.E. Bush,2007
Furnace -37.1 S.E. Bush,2007

Natural Gas -37.7 Pataki,2003

Total -25.59 This study




4.3. Cement/Clink CO, flux density map



Table.8 The number of sizeable production plants in Eastern China.

Province Number
Jiangsu 33
Zhejiang 29
Anhui 40
Fujian 60
Jiangxi 33
Shandong 30

Shanghai 0




Table.9 The number of production lines in Eastern China.

Production (1000ton/day)

Province <1 1-2 2-3 3-4 4-5 5-10 >10
Jiangsu 0 6 16 3 2 29 2
Zhejiang 0 15 35 0 1 21 0
Anhui 0 4 22 0 4 53 6
Fujian 0 2 24 1 4 18 0
Jiangxi 0 7 23 2 5 20 0
Shandong 0 6 32 0 17 33 0
Shanghai 0 0 0 0 0 0 0
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Fig.10 The cement plants and its
production in Eastern China.
(The red star represents NUIST)
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F.in YRD: 9.75% of F (CO, mg-m=-s!), in this study.
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Fig.12. The CO, emission contributed by clink production in regional areas.




4.4, Source footprint



* Dataset:

1. Meteorology data: NCEP GDAS 1° X1° data

2. CO, concentration data:
Picarro G2201-i: From 14" Oct,2012 to 26™ Feb,2013.
Picarro G1101-i: From 26" Feb ,2013 to 7t July,2014.

* Method (Sigler, 2006):

1.Three 48-hour backward trajectories were simulated per day at
10:00, 13:00 and 16:00 LST.

2. The simulation of height 1s 1000m.The reasons why I
determined 1000m are shown in the next slide.

3.The criterion value were determined from the 85th percentile
concentration of all Picarro data for every season.

4. WPSCF was used in this analysis.
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According to Pro Zheng YouFei(X5H ¥)’s research, they found the monthly
maximum value of the height of PBL during Winter,2010 to Fall,2011 were higher
than 1km. The moment when the maximum value occurred also corresponded to my
simulation. The results showed the seasonal variation of the height of PBL was
Winter<Autumn<Spring<Summer.

Pro Jiang WeiMei(# £ ) found the height of PBL was about 500m in 2002 in
Nanjing, which was adopted by Yang Dong (##5)’s paper, but Jiang Run(Z=i[)
found the height of PBL in Nanjing was higher than 1km at noon in winter in her
Master’s graduation paper. What’s more, Qi DeLi(551ZF) helped me calculate the
height of PBL by running WREF. The results testified that the height of PBL during
2013 to 2014 was about 1km from 10:00-17:00 LST in every months.

The increasing roughness of land surface due to urbanization (and heat island) might
be the main reasons why the height of PBL lifted rapidly in this decade.



Table.10 The seasonal 85th percentile CO, concentration.

Season CO, Concentration (ppm)

Autumn,2012 452 .87
Winter,2012-2013 456.87
Spring,2013 459.23
Summer,2013 448.17
Autumn,2013 458.73
Winter,2013-2014 467.42
Spring,2014 466.75

Summer,2014 470.90*
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Fig.13 WPSCEF probability values during Autumn,2012. (The red circle is the location of
Meteorology Building, NUIST,Nanjing.)
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Fig.15 WPSCEF probability values during Spring, 2013.
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Air mass trajectory analysis package
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The source region was strongly influenced by the dominating
synoptic systems 1n four seasons. So the 48-hour back
trajectory could reach Russia in winter and Hainan or Taiwan
province in summer.

From autumn,2012 to summer, 2014, the main potential source
regions lied in the south of Jiangsu province, the north of
Zhejiang province and the east of Anhui province where so
many cement plants located 1n.

During summer (Figl6 and 20), the potential source region
was local areas.

During winter,2013-2014, the potential source region was
Anhui province, which could reach 0.5. But the production in
winter was low because of spring festival vacation.



4.5. CO, flux in YRD



Table.11. Other CO, sources’s"C .

Carbon Sources  §"C(%o) Reference

Cement 0 Andes,2000
Plant -26.2 Pataki1,2003
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Fig.21. The time series of net CO, flux (Fy) and plant CO, flux (Fp) in Nanjing.
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Fig.22. The time series of net CO, flux (Fy) and plant CO, flux (Fp) according
NOAA'’s carbon tracer (CT) data in 2012 (The magnitude of CO, Flux contributed by
fire was 10 (CO,mg-m2-s!)).



Table.13. CO, flux in YRD.

Flux (CO, mg-m?2-s!)  Net Plant Fossil fuel Clink Fire

Picarro 3.347 1.297 1.922 0.128
CT 2.658 -0.175 2.830 0.003




5. Conclusion



1. 613Cq calculated by Miller-Tans method was less negative than Keeling
plot. Miller-Tan method had a better performance to calculate 0 13Cq. 6 13C
was highest in summer while lowest in spring. The D-value could reach
about 1%o .

2. The mixing ratio 0 13C of fossil combustion was -25.59%o with a high
uncertainty.

3. The source region was strongly influenced by dominating synoptic systems
in four seasons.

4. Fossil fuel combustion could contribute 0.1744 CO, mg-m2-s! while
cement production could emit 0.0670 CO, mg-m=-s!in YRD in 2012 .

5. The magnitude of net CO, flux and plant CO, flux calculated by using 3C
isotope was right, but it still need be adjusted to adopt the seasonal trend and
former research.



. Next work

1. Take more industrial potential CO, contributors into
consideration, such as synthesis ammonia, pig iron and crude
steel.

2. To decrease the uncertainty of 0 13Cq by removing more
outliners.

3. To complete analyzing the sensitivity and uncertainty of mean
contributions by each fractional CO, flux in YRD.

4. Try to focus on the influence of environmental regulations
caused by Youth Olympic Games this summer in Nanjing on
regional atmospheric CO, and its stable 1sotope ratio.






