

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

$\mathrm{N}_2\mathrm{O}$ concentration and flux in Lake Taihu

Qitao Xiao 2016.11.18

- > 1. Background
- > 2. Objective
- > 3. Material and Method
- > 4. Results and Discussion
- 5. Conclusions

1. Background

- Inland waters are potentially important source of N₂O (Beaulieu *et al.*, 2011).
- The N₂O emission in lentic ecosystem (lake, reservoir, and pond) are often neglected due to the lower ratio of / water area to water volume (Mulholland *et al.*, 2008).

The N cycle in inland waters

The role of lake in N₂O emission of aquatic system

The N_2O emission from lakes show high spatial heterogeneity. (a) A global assessment of N₂O emission fluxes for lakes, rivers, wetlands, and soil (Hu *et al.*, 2016, Global Change Biology)

 (b) Regional N₂O flux fluxes for lakes, rivers and ponds (Soued *et al.*, 2015, Nature Geoscience)

- The denitrification rate of lake was significant higher (Seitzinger *et al.*, 2006. Ecol. Appl).
- The surface area of global lakes (5×10⁶ km², Verpoorter *et al.*, 2014) are significant higher that rivers (6 ×10⁵ km², Raymond *et al.*, 2013).
- The longer water residence time in lakes are more effective for N removal (Mulholland *et al.*, 2008).

A New High-Resolution N_2O Emission Inventory for China in 2008 (Zhou *et al.*, 2014, EST)

It was estimated that the global highest N load and N_2O emission from aquatic ecosystem appeared in eastern of China (Seitzinge *et al.*,1998)

The N budget in Lake Taihu

The effects of anthropogenic N input on water quality and algal bloom in Lake Taihu had been well documented, but its impact on the N_2O emission was not clear.

The seasonal variation of (A) TN, (B) PN, (C) TDN, (D) NO_3^{-1} , (E) NH_4^+ , and (F) NO_2^{-1} at the two sampling stations in Lake Taihu (Xu *et al.*, 2010. Limnol. Oceanogr)

The higher denitrification rate at summer may contribute the lower N load in Lake Taihu.

8

2. Objective

- Characterizing temporal and spatial variability of the N₂O flux in the lake;
- Investigating the biological, chemical and physical controls of the observed variabilities;
- Determining the relative contributions of anthropogenic N load to the lake N₂O emission;
- Quantifying the roles of the lake in the N₂O emission in regional water networks;

3. Material and Method

3.1 Study site

- 29 spatial sampling sites (red dots) at the seven biological zones;
 - 51 rivers (green lines, outflow rivers; blue lines, inflow rivers; red lines, rivers with reversible flow);
- Eddy flux sites (red crosses): temporal sampling site;
 - The Northwest Zone is hypereutrophic due to pollution discharged by urban and agricultural runoffs;

The N_2O flux (F_n) at the water-air interface was calculated using the transfer coefficient method based on the bulk diffusion model, as:

$$F_{\rm n} = k \times (C_{\rm w} - C_{\rm e})$$

 $C_{\rm w}$: N₂O concentration dissolved in the surface water (at the depth of 20-cm); $C_{\rm eq}$: N₂O concentration in water that is in equilibrium with the atmosphere at the in-situ temperature;

k : the gas transfer coefficient;

3.3 Emission factor (EF) calculation

EF	Equation	Remarks
EF (a)	$EF(a) = ER/L_{DIN}$	ER is the annual N ₂ O-N emission rate ; L_{DIN} is annual DIN load
<i>EF</i> (b)	$EF(b) = c(N_2O) / c(DIN)$	c(N ₂ O) and c(DIN) denote dissolved N ₂ O-N and DIN concentrations
<i>EF</i> (c)	$EF(c) = c(pN_2O) / c(DIN)$	$c(pN_2O)$ is dissolved N_2O concentration in excess of equilibrium with atmospheric N_2O concentrations

 $DIN = NH_4^+ + NO_3^- + NO_2^-$

Outline

- > 1. Background
- > 2. Objective
- > 3. Material and Method
- > 4. Results and Discussion
- 5. Conclusions

The temporal variation of N_2O flux from 2011 to 2016

The spatial pattern of N₂O flux (F_n) at (a) spring, (b) summer, (c) autumn, and (d) winter from 2012 to 2015

The spatial pattern of DIN (a) and EF_b (b) in Lake Taihu and river during autumn

In Lake Taihu: $EF_a = 0.69\%$; $EF_b = 0.27\%$ In river: EF_b _Inflow = 0.15\%; EF_b _Outflow = 0.12\%

Control factor of N_2O flux (F_n) temporal variation

Spatial variation of environmental factors

Control factors of N_2O flux (F_n) spatial variation

Spatial correlation of the mean N₂O flux against mean water quality indices

	DO	Chl	Spc	ORP	pН	NTU	NH4 ⁺ (c)	NO ₃ - (c)
$F_{n}^{(a)}$	-0.93**	0.20	0.57**	0.18	-0.68**	-0.19	0.95**	0.64**
$F_{\rm n}$ (b)	-0.55**	0.26	0.01	0.17	-0.54**	-0.11	0.63**	0.30

*, ** Correlation is significant at the 0.05, and 0.01 level, respectively.

(a) data acquired at all the spatial sampling sites;(b) excluding sites in the Northwest Zone(c) data acquired at November 2015;

DO: dissolved oxygen concentration (mg L⁻¹); Chl: chlorophyll a concentration (μ g L⁻¹); Spc: specific conduce (μ s cm⁻¹); ORP: oxidation reduction potential (mv); NTU: turbidity

$$F_{\rm n} = 38.48 \; ({\rm NH_4^+}) - 0.05 \; ({\rm ORP}) - 16.26 ({\rm pH}) + 156$$

 $(R^2 = 0.92 \; p < 0.001)$

The effect of N input on the N_2O flux in Lake Taihu (TDN: total dissolved nitrogen)

20

Anthropogenic N inputs controlled 70% of N_2O emission in Lake Taihu

21

Zones	Surface area	DIN	Mean N ₂ O flux	Weight
	(km ²)	(mg L-1)	(µmol m ⁻² d ⁻¹)	
Meiliang Bay	100	0.31	3.63	3.18%
Northwest Zone	215.6	2.88	37.12	70.15%
Central Zone	316.4	0.48	0.39	1.08%
Gonghu Bay	131	1.13	2.53	2.90%
East Zone	443.2	0.28	1.03	4.01%
Dongtaihu Bay	394.1	0.43	2.21	7.63%
Southwest Zone	737.5	0.26	1.71	11.05%
Whole lake	2338	0.72	7.36	

 $DIN = NH_4^+ + NO_3^- + NO_2^-$

Lakes contributed 17% of N_2O emission from aquatic networks in Taihu basin

22

		Lake	River
Period		2012.2 ~ 2015.11	2013.5 ~ 2016.2
N ₂ O flux (µmol m ⁻² d ⁻¹)	Range	-7.13 ~ 152.76 ^(a)	-13.14~572.80 ^(a)
	Mean	7.36	51.92
Area (km ²)		3231	2320
N_2O yield (t yr ⁻¹)		380	1912

(a) Given the large variability in observed fluxes, we proposed the reported values in the study represented all lake and river N_2O emission in Taihu basin.

5. Conclusions

□ The N_2O emission flux in Lake Taihu ranged from -7.13 to 152.76

 μ mol m⁻² d⁻¹ showing large temporal and spatial variation;

- Anthropogenic N inputs controlled 70% of N₂O emission in the lake ;
- Lakes contributed 17% of N₂O emission from aquatic networks in Taihu basin;

Paddy field

Algae blooming

River in Taiu Basin

red by

mea