An update on eddy-covariance methane flux measurement at Lake Taihu

Xiao Qitao 2016.5.6

1 Background

2 Material and method

■ 3 Results

3.1 CH₄ flux at submerged macrophyte habitat3.2 Relations to CO₂ flux

The effect of global warming on lake CH₄ emission:

Global warming significant accelerates CH₄ emission from aquatic ecosystem (*Yvon-Durocher et al.*, 2014).

- The warming rate in lake (0.34 °C/10a) is significant higher, contributing significant amounts of CH_4 to the atmosphere (*O'Reilly et al.*,2015).
- Climate warming increases oxygen stratification and decrease water quality (*Zhang et al.*,2016), facilitating CH₄ production in sediment.

• The mineralization organic matter of in sediments, such as *submerged plants*, is strongly influenced by temperature (*Song et al., 2013*).

Large and intermediate-sized lakes dominate the total lake surface area, and shallow lakes are very numerous (*Downing et al., 2006, Verpoorter et al., 2014*).

Generaly, shallow lakes are dominated by phytoplankton (eutrohic) or vegetation (*Kosten et al., 2012; Beaulieu et al., 2013; Qin et al., 2014*), which also hotspot for CH_4 emission.

Most of lake in China is large and shallow, with a total lake surface area of 68264 km², occuping about 2% of the gobal lake area.

Yang et al., 2011

The lakes in China:

- Higher nutrient enrichment
- *Higher organic matter input*
- Higher accumulation rates

- (a) The distribution of lake in China
- (b) The study on CH₄ emission fromlake, wetland, and rice paddiesin China.

Numerous lakes, but limited field data

Chen et al., 2013

■ 1 Background

2 Material and method

■ 3 Results

3.1 CH₄ flux at a submerged macrophyte habitat3.2 Relations to CO₂ flux

0 5 10Km

Study site (BFG), dominated by submerged vegetation Instrument: three-dimensional sonic anemometer (Model **CSAT3**, Campbell Scientific Inc., Logan, UT, USA); Open-path infrared gas analyzer (Model EC150, Campbell Scientific Inc.)

Open-path CH₄ gas analyzer (Model Li-7700, LI-COR Inc., Lincoln, NE, USA)

Lee et al., 2014

Computing CH₄ *flux*

$$F_m = A \left\{ \overline{w'\rho'_m} + B \frac{\overline{\rho_m}}{\overline{\rho_d}} \overline{w'\rho'_v} + C(1+\mu\sigma) \frac{\overline{\rho_m}}{\overline{T}} \overline{w'T'} \right\}$$

The coefficients, A, B, and C, arise from the correction of the spectroscopic.

The relative importance of spectroscopic corrections would increase when observing small CH₄ fluxes (*Iwata et al., 2014; Podgrajsek et al., 2014*).

Post-processing data

Coordinate rotation - WPL correction- spectroscopic correction- quality control

■ 1 Background

2 Material and method

■ 3 Results

3.1 CH₄ flux at submerged macrophyte habitat3.2 Relations to CO₂ flux

Figure.1 The tilt as a function of wind direction.

Standard deviation of wind direction

Figure.3 The diurnal cycle of measured CH_4 flux (F_m) indicated by median.

Figure.4 The diurnal pattern of measured CH_4 flux (F_m) against atmospheric press and turbulent kinetic energy (TKE, cm² s⁻²) 1 m above the sediment.

Figure.5 The bin-average atmospheric press (0.5 kPa) against CH₄ flux (F_m , mean \pm SE).

Figure.6 The bin-average CH₄ flux ($F_{\rm m}$, 0.5 µg m⁻² s⁻¹) against turbulent kinetic energy (TKE) and atmospheric press (mean ±SE).

Table.1 The eddy covariance CH_4 measurement at submerged macrophyte habitat

	Raw	WPL-LE	WPL-H	Sp ^(a)	Total
CH ₄ (µg m ⁻² s ⁻¹)	0.101	0.050	0.022	0.022	0.196

(a) Sp: spectroscopic corrections

Table.2 The CH₄ emission flux in Lake Taihu

Study site	Method	$CH_4 (\mu g m^{-2} s^{-1})$	Reference	
Submerged	Eddy covariance	0.196 (0.146 ^(b))	In the study	
vegetation zone	Water equilibrium with correction	0.075 (day)	Our study	
Eutrophic zone	Flux gradient	0.056	Xiao et al., 2014	
The whole lake	Water equilibrium with correction	0.060	Our study	
Littoral zone with alga and macrophyte	Static chamber	2.32	Wang et al., 2006	

(b) Selected by wind direction (135 - 315 °C)

■ 1 Background

2 Material and method

3 Results

3.1 CH₄ flux at submerged macrophyte habitat3.2 Relations to CO₂ flux

Figure.7 The diurnal pattern of CH_4 flux (F_m) against CO_2 flux (F_c) (**a**), the wavelet power spectrum of CO_2 flux at the BFG site (**b**).

Biological factor drive the $F_{\rm m}$?

Figure.8 The bin-average CO₂ flux (F_c , 0.1 mg m⁻² s⁻¹) against CH₄ flux (F_m , mean \pm SD).

Figure.9 The mean monthly CH_4 flux (F_m , mean \pm SE) and CO_2 flux (F_c , mean \pm SE).

Figure.10 The bin-average water temperature (1 °C) against CH_4 flux (F_m) and CO_2 flux (F_c).

Figure.11 The effect of ecosystem respiration (a) and photosynthesis (b) on the mean monthly CH_4 flux (F_m)

Figure.12 The wavelet coherency and phase difference between CH_4 flux and CO_2 flux. The arrows show the phase difference : in-phase pointing right, anti-phase pointing left, and the angle indicates time lag (*Grinsted and Zhang*, 2011).

Figure.13 The wavelet coherency and phase difference between CH_4 flux and CO_2 flux at (a) spring, (b) summer, (c) autumn, and (d) winter.

Figure.14 The wavelet coherency and phase difference between CH_4 flux and TKE

at (a) spring, (b) summer, (c) autumn, and (d) winter.

Table.3	Mean time	lag within	days with	significant	correlation	between	$F_{\rm m}$ and	d $F_{\rm c}$
---------	-----------	------------	-----------	-------------	-------------	---------	-----------------	---------------

	Time period (d)	Phase difference	Time lag (h)
Spring	<1	In-phase	-2.10 ± 1.79
Summer	<1	In-phase	0.50 ± 1.56
	2	Anti-phase	-2.45
Autumn	<1	In-phase	-0.16 ± 2.44
	1	Anti-phase	6.70 ± 7.52
Winter	<1	In-phase	-2.17 ± 5.8
	1	In-phase	-6.35 ± 0.85

Table.4 Mean time lag within days with significant correlation between $F_{\rm m}$ and TKE

	Time period (d)	Phase difference	Time lag (h)
Spring	0.5	In-phase	-0.37 ± 0.15
Summer	0.5	In-phase	4.60 ± 1.22
Autumn	0.5-1	In-phase	-1.47 ± 1.86
Winter	0.5	In-phase	-1.57 ± 0.74

■ 1 Background

2 Material and method

■ 3 Results

3.1 CH₄ flux at submerged macrophyte habitat3.2 Relations to CO₂ flux

Figure.15 The difference between CO_2 flux (F_c) measured by two new EC systems.

Figure.16 The correlation between mean monthly CH_4 flux (F_m) against water level(a), and NDVI (b).

Long-term trends of environment factors in of aquatic vegetation habitat of Lake Taihu

Type I: emergent, floating-leaved and floating vegetation, Type II: submerged vegetation

(a) interannual changes of aquatic vegetation (*Luo et al.*, 2016), (b) vegetation appearance frequency (*Zhang et al.*, 2016), and (c) long-term trends of Chl-a concentration (*Zhang et al.*, 2016).

The effect of ecological dredging on CH₄ emission

Distribution of lacustrine sediment in

Lake Taihu (Qin et al., 2007)

*The CH*₄ *loss in Dongtaihu:*

	Emission from lake	Ecological dredging
$CH_4 $ loss (t year ⁻¹)	82	323

The dissolved organic carbon (DOC) loss rates in Lake Taihu :1.7 $\times 10^4$ t year⁻¹ (*Zhou et al.*, 2015).

Dongtaihu Bay:

Surface area: 131 km²
CH₄ emission flux: 0.192 μg m⁻² s⁻¹ (Our study).
Ecological dredging : 165 m³ year⁻¹ (*Zhu et al., 2012*).
CH₄ concentration in sediment:
19.6 mg L⁻¹ (*Zhu et al., 2012*)

The effect of aquatic vegetation on CH₄ emission

- Supply the organic matter and labile carbon for CH₄ produce
- Vegetation-mediated transport
- Restrict CH₄ bubble and turbulent kinetic energy
- Transport oxygen to the rhizosphere and facilitate CH₄ oxidation

- ✓ Extreme zero CH_4 emission in wetland with high oxygen and plant roots densities (*Fritz et al.*, 2011).
- Plant with high root: shoot biomass is associated with low CH4 emission (*Bouchard* et al., 2007).

Conclusion

• The CH_4 flux is mainly controlled by water temperature.

Turbulent kinetic energy of water and atmospheric press dominate the diurnal cycle of CH_4 flux.

The correlation between CH_4 flux and CO_2 flux is significant, and ecosystem respiration could influence directly CH_4 emission.

Is shallow lake with large area associated with low CH₄ emission ?

you