

Eddy covariance measurement of CH₄ flux at Lake Taihu

Qitao Xiao August 29, 2014

♦Outline

- 1 Background
- 2 Method and material

- 3 Results
- ☐ CH₄ flux measured by Eddy covariance
- □ Comparison between the new and old EC system
 - 4 Discussion

♦ 1 Background

- Methane is one of the most important greenhouse gas, contributing 0.48W m⁻² to anthropogenic radiative forcing, second only to CO₂.
- ☐ For methane, lakes are of significant importance, and recent studies have shown that lakes may offset the global terrestrial carbon sink by about 25% (Bastviken et al, 2011).
- Eddy covariance measurement of methane exchange are possible over peatlands and wetlands (Detto et al, 2010; Hendriks et al, 2008; Rinne et al, 2007), only a few EC studies have measured CH₄ from inland waters (Eugster et al, 2011; Schubert et al, 2012).
- Papers state that methane fluxes measured with LI-7700 agree well with methane fluxes measured with closed path sensors and that LI-7700 is the best choice for measurements on remote sites.

• 2 Method and material

Li-7700: open-path methane analyzer

Length: 0.47m

Weight: 5.2kg

Low-power

◆Computing Flux (online & offline)

CH₄ flux calculated by online

$$F_c = A \left\{ \overline{w' q'_{cm}} + B \mu \frac{\overline{q_{cm}}}{\overline{q_d}} \overline{w' q_v'} + C(1 + \mu \sigma) \frac{\overline{q_{cm}}}{\overline{T}} \overline{w' T'} \right\}$$

- ✓ Spectroscopic corrected is simultaneously WPL corrected.
- ✓ A account for spectroscopic effects of temperature, pressure, and water vapor on methane density.
- ✓ B provides spectroscopic corrections to the latent heat flux term for pressure and water vapor.
- ✓ C provides spectroscopic corrections to the sensible heat flux term for temperature, pressure and water vapor.

- □ CH₄ flux calculated by offline
- ✓ Raw data processing
- axis rotations for tilt correction: double rotations
- detrending method: block average
- time lags compensation: covariance maximization with default
- ✓ Compensate density fluctuations: WPL correction
- ✓ Spectral correction: low frequency rang & high frequency range
- ✓ Spectroscopic corrections

Webb et al, 1980; Moncrieff et al, 1997; Moncrieff et al, 1997; McDermitt et al, 2010

◆3.1 CH₄ flux measured by Eddy covariance

□ The CH₄ concentration of atmosphere at BFG site

□ Comparison of raw CH₄ flux and corrected CH₄ flux calculated by online

□ Comparison of raw CH₄ flux

□ Comparison of corrected CH₄ flux

☐ The average CH₄ flux

	Average CH ₄ emission flux (μg m ⁻² s ⁻¹)				
Date (2014)	Calculated by online		Calculated by offline		
	raw	corrected	raw	corrected	
4.29~ 5.28	0.314 ± 0.627	0.373 ± 0.642	0189 ± 0.309	0.302 ± 0.383	
6.5~ 7.10	0.492 ± 0.742	0.606 ± 0.743	0.228 ± 0.453	0.411 ± 0.540	
7.10~ 8.5	0.818 ± 0.948	0.963 ± 0.970	0.564 ± 0.756	0.816 ± 0.924	

The average CH₄ emission flux: $0.367 \pm 0.550 \,\mu g \,m^{-2} \,s^{-1}$

Day: $0.310 \pm 0.491 \, \mu g \, m^{-2} \, s^{-1}$

Night: $0.415 \pm 0.590 \, \mu g \, m^{-2} \, s^{-1}$

■ Data quality check

	Day	Night
Data (points)	764	826
Flag0 (%)	8.6	5.9
Flag1 (%)	66.5	65.6
Flag2 (%)	24.9	28.5

Flag 0: best quality fluxes

Flag 1: fluxes suitable for general analysis

Flag 2: fluxes should be discarded

Mauder and Foken, 2004

☐ Compared with the related research

Study site	Method	CH ₄ emission flux (μg m ⁻² s ⁻¹)	Reference
BFG(2014.5~2014.8)	EC (Model Li-7700)	0.367	This study
MLW(2012.5~2012.8)	Gradient diffcusion	0.223	This study
MLW(2011.8~2013.12)	Water equilibrium	0.031	This study
Lake Tamnaren	EC (Model Li-7700)	0.112	Podgrajsek et al, 2014
Wuliangsu Lake	Static chamber	0.6	Duan et al, 2005
Boreal lake (total: 177)	Water equilibrium	0.149	Juutinen et al, 2009
Wetland lake	Floating chambers	1.08	Schrier-Uijl et al, 2011

☐ Compared with other ecosystem

Study site		Method	CH ₄ emission flux (μg m ⁻² s ⁻¹)	Reference
BFG(2014.5~2014.8)		EC (Model Li-7700)	0.367	This study
Urban wetland		EC (Model Li-7700)	0.16~0.64	Morin et al, 2013
Rice field		EC (Model Li-7700)	1.312(peak)	Alberto et al, 2014
Sheep pasture		EC (Model Li-7700)	0.288	Dengel et al, 2011
Poor fen		EC (Model Li-7700)	0.81~2.55	Pypker et al, 2013
Wet coastal tundra		EC (Model Li-7700)	1.91	Ikawa et al, 2012
Heterogeneous wetland		EC(Model Li-7700)	1.24~7.41	Matthes et al, 2014
Wetlan	d ditch	Floating chambers	9.36	Schrier-Uijl et al, 2011
	River	Static chamber	8.69	
Delta	Floodplain	Static chamber	5.66	Gondwe et al, 2014
	lagoons	Static chamber	4.69	

◆3.2 Comparison between the new and old EC system

- $ightharpoonup CO_2/H_2O$ concentration and Ts
- > friction velocity
- sensible heat flux
- ≥latent heat flux
- ightharpoonupCO₂ flux
- ➤ wpl correction for CO₂ flux and Latent heat flux

☐ Tilt as a function of wind direction

☐ Time series of temperature

\square Time series of CO₂ density and H₂O concentration

Comparison of friction velocity

☐ Comparison of sensible heat flux

Comparison of latent heat flux

□ Comparison of CO₂ flux

■ WPL correction for latent heat flux

□ WPL correction for CO₂ flux

4 Discussion

□ The open path CH4 analyzer should be maintained frequently: ten days is the threshold

□ The CH₄ emission flux calculated by water equilibrium method at BFG site

The CH₄ flux will reach a high level: $0.1 \mu g \text{ m}^{-2} \text{ s}^{-1} * 10 = 1 \mu g \text{ m}^{-2} \text{ s}^{-1}$ Schubert et al (2012) have a conclusion: boundary model estimates were 5-30 times lower at calculating CH4 emission flux of aquatic system.

☐ The impact of ebullition

- Ebullition is an important path that transport CH₄, Shakhova et al (2014) estimate that bubble inject 100-630 mg CH₄ m⁻² d⁻¹(about 1.16-7.29 μg CH₄ m⁻² s⁻¹) into the overlying water at the Arctic Shelf (*published at Nature*).
- ◆ The impact of ebullition on eddy covariance measurement of CH₄ flux .
- ◆ CH₄ bubble emission level at BFG site

Thank You