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White Bear Lake (WBL)
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“White-bear Lake ... is a lovely sheet
of water, and is being utilized as a
summer resort by the wealth and
fashion of the State. It has ... its fine

summer residences; and plenty of
fishing, hunting, and pleasant
drives... White-bear Lake is the
resort.”

Life on the Mississippi By Mark Twain




Historical Perspective

(fmr.org, 2012)
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Public Concerns

Land of 9,999 “shrinking” lakes? Is White Bear Lake MN’s “climate change
canary in coal mine?”

ﬂ Paul Huttner

Why not just fill up White Bear Lake from one of the rivers?

t Dave Peters

$50M pipe might not restore White Bear Lake levels

a Elizabeth Dunbar

TwinCitiee How to fix White Bear Lake? Many facts still unknown

By DEBRA O'CONNOR | doconnor@pioneerpress.com
PUBLISHED: July 24,2014 at 11:01 pm | UPDATED: November 3, 2015 at 10:39 am

MPRNEWS Water rising again in White Bear Lake, but will it stay?

@ Matt Sepic Environment

TwinCities White Bear Lake wants answers about low water level, despite recent rise

By HALEY HANSEN | hhansen@pioneerpress.com
PUBLISHED: December 8, 2016 at 7:01 am | UPDATED: December 8, 2016 at 7:06 am



Proposed water augmentation
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Estimated Cost Sucker Lake Alterna

tive | East Vadnais Lake Alternative

Construction Cost

(2018-19 dollars) $67 million

S55 million

Operations and Maintenance Cost* $570,000 / year

$570,000 / year

*Assuming annual pumping of two billion gallons (7.6x10° m3) per year.




Hydrology of WBL
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Pan vs. Lake
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“It is easy to understand their intuitive appeal, because they model the evaporation
from a free water surface in a visible way... it is still very difficult, if not impossible, to

make a general and practical use of pan data except special situations.”
Evaporation into the Atmosphere By Wilfried Brutsaert
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Scientific Questions

What is the magnitude of evaporation from WBL and
how much does it vary seasonally and inter-annually?

How sensitive is annual evaporation to meteorology and
climate and to what extent has evaporation from the
lake changed over the past 30 years?

How are changes in climate going to impact evaporation
and WBL lake water level through the 215 Century?

What are the potential implications for other lakes
within the Mississippi River - Twin Cities watershed?
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Eddy Covariance Observations
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Numerical Modeling

Evaporation and Water Level



Part 1: Eddy Covariance Observations
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Climatology
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The heat released from the lake was the main energy source for
evaporation in the fall
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Daily evaporation at WBL was strongly influenced by synoptic-
scale variability
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A pronounced two-week cycle of evaporation in the fall coincided
with synoptic scale systems as identified from wavelet analyses
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Pan vs. Lake
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The lake-to-pan evaporation ratio showed large monthly and inter-annual
variability. In particular, the variability in the length of ice-free periods can have
a large influence on these ratios making it impractical to obtain a representative
annual value.



Part 2: Ice Phenology - The Challenge
of Estimating Annual Evaporation



The length of Ice-free period is an important factor
to estimate evaporation in temperate lakes.

2016 Lake Ice Out Dates

Key

. ice out before March 18
. ice out March 18 to March 2¢

ice out March 25 to March 31

Thunder Bay
343
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Remote Sensing — MODIS data

500-m daily reflectance

Normalized Difference Snow Index

NDSI = Band?2 — Band5 (Irish, 2000)

Band 2 + Band5

— Band 2 (NIR: 841-876 nm)
— Band 5 (SWIR: 1230-1250 nm)

Accumulation of NDSI(water) NDSI(Iand)
Example: Lake Waconia
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lce-free days

Ice-free days
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Part 3: Numerical Modeling



CLM4-LISSS

e Community Land Model — s
— Lake, Ice, Snow and “w pme || o

Snow aging

Sediment Simulator 4

e 1D thermal diffusion
equation (no horizontal s " upon ieein:
O SIS s b ice aggregates at top

flux exchanges)

* Adequate to simulate g
lake water temperature
and surface energy
fluxes R

10 soil layers <

(Subin et al., 2012)



Important features

* The model includes

— improved calculations of surface fluxes and lake
temperature

— improved parameterizations of lake properties
such as roughness, albedo and opacity

— processes of freezing and melting
— a comprehensive treatment of snow



Flux Calculations

Energy Balance: S+L=H+/E+G
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S, Net shortwave radiation

B fraction of S, absorbed by the lake surface
L,., downward longwave radiation flux

T, water surface temperature Critical variable

g, saturated specific humidity at 7,

r,;, aerodynamic resistance with respect to
sensible heat

r,,, aerodynamic resistance with respect to

latent heat Critical parameters

k thermal diffusivity

T; temperature of the top lake model layer
Az; top lake model layer thickness



Model Tuning

WBL

EVCRELLL

(Deng et al, 2013;

Depth of lake

Convective mixing

Albedo

Thickness of the lake surface layer (z,)
Light extinction coefficient (7)

Wind-driven eddy diffusivity (K.)

Enhanced eddy diffusivity
Roughness length of momentum (z,,,)
Roughness length of heat (z,,)

Roughness length of moisture (z,,)

25m

On

Original scheme in CLM4-LISSS
0.6m

Observed (0.57 m™?)

0.005 of the original scheme
in CLM4-LISSS

0.1x10™ ~1.8x10™> m?s!
On

10xf(u*), 10*~ 10> m
IN(2om/20n)=7.36, 107~ 108 m
In(zom/205)=7.48, 107~ 10°% m

Hu et al., 2016)

Off

Observed

0.2m

Observed (5 m™)

0.02 of the original scheme in
CLM4-LISSS

0.1x10™> ~ 4x10™> m?s™!
Off

3.3x10"m

1.9x10°m

3.9x10%m



Example: Convective mixing off




Example: Convective mixing on
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Modeling Cases

Period 2014-2016 1979-2016 2017-2100
Forcing data  Obs and NLDAS NLDAS GFDL-ESM2G under RCP8.5
Spin-up data 2004-2013 of NLDAS 10x 1980 of NLDAS 2006-2016 of GFDL-ESM2G

 NLDAS: North American Land Data Assimilation System project
phase 2(NLDAS-2) Primary Forcing Data L4 (Xia et al., 2012)

— Hourly, 0.125 x 0.125 degree

* GFDL-ESM2G: one of the climate models in the fifth phase of the

Coupled Model Intercomparison Project (CMIP5) (Dunne et al.,
2012)

— 3-hourly, 2.0 x 2.5 degree
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lce Phenology
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Retrospective Evaporation
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Annual Evaporation from 2014 to 2016

Year Sources of Evaporation and Ice-out Ice-in date Ice-free Daily E Annual E | Averaged
& Observation ice phenology data date days (mm) (mm) Annual E
Period (days™) (mm)
2014 EC, MNDNR Apr 23 *Nov 17 209 2.60 543
Jul 18 Weighted EC, MNDNR Apr 23 *Nov 17 209 2.56 535
to Nov 14 Validation modeling Apr 22 Nov 28 221 2.57 567 >o9+22
(102) Retrospective modeling Apr 20 Dec 3 228 2.59 590
2015 EC, MNDNR Apr 2 Dec 30 273 3.35 915
May 8 Weighted EC, MNDNR Apr 2 Dec 30 273 2.79 763
to Oct 31 Validation modeling Apr 3 Dec 16 258 2.75 709 779181
(177) Retrospective modeling Apr9 | (2016) Jan 1 268 2.73 731
2016 EC, MNDNR Mar 16 Dec 10 270 2.88 778
Mar 25 Weighted EC, MNDNR Mar 16 Dec 10 270 2.77 748
to Nov 30 Validation modeling Mar 13 Dec 15 278 2.78 773 76611
(251) Retrospective modeling Mar 25 Dec 15 266 2.87 764

x The integrated days does not include the missing days within observation period.
* No record from MINDNR, filled by the MODIS data.




Part 4: Evaporation and Water Level



A regional drought and potential intensified groundwater use
can have a dramatic impact on water level at a closed-basin lake
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Future Climate Change Scenarios
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Evaporation under RCP8.5 Scenario
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Conclusions

* The annual evaporation at WBL from 2014 to 2016 was
559422, 779481, and 766%x11 mm, respectively. The annual
evaporation in 2014 was least among the three years, due to
its relatively short ice-free period and its relatively lower daily
evaporation rate.

 The retrospective analyses indicated that WBL evaporation
increased by about 3.8 mm yr~! from 1979 to 2016, which was
attributed to both increased daily mean evaporation and the
extended ice-free period.

* Annual evaporation at WBL will increase 1.4 mm yr~! over this
century under the RCP 8.5 scenario, which is largely driven by
the extended ice-free periods.



Regional Implications for Lake Water Levels

Lake levels within the region are closely coupled to
evaporation

— The lake level declines at WBL during 1986—1990 and 2003-
2012 were caused by the coupled low precipitation and high
evaporation

Small changes in the evaporation rate or ice phenology
can have significant impacts on available water for the
communities

— For WBL, a typical evaporation rate of 5 mm per day during the
summer is equivalent to 4.9x10* m3 of water or roughly 0.5 m3
s~ of continuous 24-hour pumping

— Given an advanced ice-out date or postponed ice-in date of just
one day is likely to result in an additional water loss of 2x10* m3



Regional Implications for Lake Water Levels

* A tendency for increased likelihood of lower water levels
and greater fluctuations in water level for WBL and other
lakes within the region are expected

— Lake evaporation is expected to increase due to the extended
ice-free period as climate continues to warm

* Proposed water augmentation strategies within the
region must be aware of the potential changes in supply
and demand as climate continues to warm

— Per capita water use in Minnesota is about 0.23 m3 d™* per
person (Maupin et al., 2014). The additional 100 mm of
evaporation at WBL resulting from the long-term change in
climate is equivalent to the annual water use of over 11,000
people
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