#### Evaporation from a temperate closed-basin lake and its impact on present, past, and future water level

Ke Xiao, Tim Griffis, John Baker, Paul Bolstad, Matt Erickson, Xuhui Lee, Jeff Wood, Cheng Hu

#### Presenter: Ke Xiao Department of Soil, Water, and Climate University of Minnesota, Twin Cities Email: xiaox224@umn.edu







Yale-NUIST Center on Atmospheric Environment June 22, 2017

#### White Bear Lake (WBL)

N







"White-bear Lake ... is a lovely sheet of water, and is being utilized as a summer resort by the wealth and fashion of the State. It has ... its fine summer residences; and plenty of fishing, hunting, and pleasant drives... White-bear Lake is *the* resort." *Life on the Mississippi* By Mark Twain

#### **Historical Perspective**



(mprnews.org, 2014)



(fmr.org, 2012)



#### **Public Concerns**



TwinCities PIONEER PRESS White Bear Lake wants answers about low water level, despite recent rise

By HALEY HANSEN | hhansen@pioneerpress.com PUBLISHED: December 8, 2016 at 7:01 am | UPDATED: December 8, 2016 at 7:06 am

#### Proposed water augmentation



Water quality? Ecology? Hydrology?

| (MN | DNR) |
|-----|------|
|-----|------|

| Estimated Cost                         | Sucker Lake Alternative | East Vadnais Lake Alternative |
|----------------------------------------|-------------------------|-------------------------------|
| Construction Cost<br>(2018-19 dollars) | \$67 million            | \$55 million                  |
| Operations and Maintenance Cost*       | \$570,000 / year        | \$570,000 / year              |

\*Assuming annual pumping of two billion gallons (7.6×10<sup>6</sup> m<sup>3</sup>) per year.

## Hydrology of WBL





General schematic of geology based Swanson and Meyer, 1990, Meyer and Swanson, 1992 (Jones et al., 2013)

#### Watershed area : Lake area = 2:1

**Closed-basin lake** 

 $\Delta L = P - E + GW_{ex}$ 

#### Pan vs. Lake



(Minnesota State Climatology Office)

#### Heat capacity? Dynamic feature? Ice phenology?



"It is easy to understand their intuitive appeal, because they model the evaporation from a free water surface in a visible way... it is still very difficult, if not impossible, to make a general and practical use of pan data except special situations." *Evaporation into the Atmosphere* By Wilfried Brutsaert

### **Scientific Questions**

- What is the magnitude of evaporation from WBL and how much does it vary seasonally and inter-annually?
- How sensitive is annual evaporation to meteorology and climate and to what extent has evaporation from the lake changed over the past 30 years?
- How are changes in climate going to impact evaporation and WBL lake water level through the 21<sup>st</sup> Century?
- What are the potential implications for other lakes within the Mississippi River Twin Cities watershed?

## Outline

• Eddy Covariance Observations

• Ice phenology

Numerical Modeling

• Evaporation and Water Level

#### Part 1: Eddy Covariance Observations

#### **Micrometeorological Towers**



#### Climatology



|   | 2014 |   |   |   |   |   | 2015 |   |   |    |    |    |   |   |   |   | 2016 |   |   |   |   |    |    |    |   |   |   |   |   |   |   |   |   |    |    |
|---|------|---|---|---|---|---|------|---|---|----|----|----|---|---|---|---|------|---|---|---|---|----|----|----|---|---|---|---|---|---|---|---|---|----|----|
|   | 1    | 2 | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5    | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
| Ρ | +    | + | Ι | + | + | + | -    | - | Ι | Ι  | Ι  | -  | Ι | - | Ι | Ι | +    | + | + | Ι | + | +  | +  | +  | Ι | + | + | + | Ι | + | + | + | + | +  | +  |
| Т | _    | - | - | - | 2 | 2 | -    | + | 2 | 2  | -  | -  | + | _ | + | + | 2    | 2 | 2 | 2 | + | +  | +  | +  | + | + | + | 2 | + | + | + | + | + | +  | +  |

# The heat released from the lake was the main energy source for evaporation in the fall



#### Daily evaporation at WBL was strongly influenced by synopticscale variability



A pronounced two-week cycle of evaporation in the fall coincided with synoptic scale systems as identified from wavelet analyses



e<sub>s</sub>-e<sub>a</sub> vs. E







#### Pan vs. Lake



The lake-to-pan evaporation ratio showed large monthly and inter-annual variability. In particular, the variability in the length of ice-free periods can have a large influence on these ratios making it impractical to obtain a representative annual value.

Part 2: Ice Phenology - The Challenge of Estimating Annual Evaporation The length of Ice-free period is an important factor to estimate evaporation in temperate lakes.

#### 2016 Lake Ice Out Dates



#### Key

ice out before March 18 ice out March 18 to March 24 ice out March 25 to March 31 ice out April 1 to April 7 ice out April 8 to April 14 ice out April 15 to April 21 ice out April 22 to 28 ice out April 29 to May 5 ice out May 6 to May 12 ice out after May 12

- DNR/PCA Sentinel Lake

Mar 16<sup>th</sup>, 2016 - Recorded earliest ice-out date at WBL Lack of ice-in data at WBL

## Remote Sensing – MODIS data

- 500-m daily reflectance
- Normalized Difference Snow Index

 $NDSI = \frac{Band 2 - Band 5}{Band 2 + Band 5}$  (Irish, 2000)

- Band 2 (NIR: 841-876 nm)
- Band 5 (SWIR: 1230-1250 nm)
- Accumulation of NDSI(water)-NDSI(land)
- Example: Lake Waconia



### NDSI(water)-NDSI(land)





#### **Ice-free days**



#### WBL ice phenology







#### Part 3: Numerical Modeling

### CLM4-LISSS



(Subin et al., 2012)

#### Important features

- The model includes
  - improved calculations of surface fluxes and lake temperature
  - improved parameterizations of lake properties such as roughness, albedo and opacity
  - processes of freezing and melting
  - a comprehensive treatment of snow

#### **Flux Calculations**

Energy Balance:  $S + L = H + \lambda E + G$ 

$$S = \beta S_a,$$

$$L = -\epsilon \Big( \sigma T_g^4 - L_{atm} \Big),$$

$$H = \rho_{atm} c_p \, \frac{T_g - \theta_{atm}}{r_{ah}},$$

$$\lambda E = \lambda \rho_{atm} \frac{q_g - q_{atm}}{r_{aw}},$$

$$G = k \frac{T_g - T_T}{\varDelta z_T / 2},$$

- **S**<sub>a</sub> Net shortwave radiation
- $\boldsymbol{\beta}$  fraction of  $S_a$  absorbed by the lake surface
- *L<sub>atm</sub>* downward longwave radiation flux
- T<sub>g</sub> water surface temperature Critical variable
- $q_q$  saturated specific humidity at  $T_q$
- **r**<sub>ah</sub> aerodynamic resistance with respect to sensible heat
- $r_{aw}$  aerodynamic resistance with respect tolatent heatCritical parameters
- *k* thermal diffusivity
- $T_T$  temperature of the top lake model layer
- $\Delta z_{T}$  top lake model layer thickness

## Model Tuning

|                                                       | WBL                                                                                                                  | Lake Taihu<br>(Deng et al, 2013;<br>Hu et al., 2016)                                                              |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| Depth of lake                                         | 25 m                                                                                                                 | 2 m                                                                                                               |
| Convective mixing                                     | On                                                                                                                   | Off                                                                                                               |
| Albedo                                                | Original scheme in CLM4-LISSS                                                                                        | Observed                                                                                                          |
| Thickness of the lake surface layer (z <sub>a</sub> ) | 0.6 m                                                                                                                | 0.2 m                                                                                                             |
| Light extinction coefficient ( $\eta$ )               | Observed (0.57 m <sup>-1</sup> )                                                                                     | Observed (5 m <sup>-1</sup> )                                                                                     |
| Wind-driven eddy diffusivity (K <sub>e</sub> )        | 0.005 of the original scheme in CLM4-LISSS $0.1 \times 10^{-5} \simeq 1.8 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$ | 0.02 of the original scheme in CLM4-LISSS $0.1 \times 10^{-5} \simeq 4 \times 10^{-5} \text{ m}^2 \text{ s}^{-1}$ |
| Enhanced eddy diffusivity                             | On                                                                                                                   | Off                                                                                                               |
| Roughness length of momentum (z <sub>0m</sub> )       | 10× <i>f</i> (u*), 10 <sup>-4</sup> ~ 10 <sup>-5</sup> m                                                             | 3.3×10⁻⁴ m                                                                                                        |
| Roughness length of heat (z <sub>0h</sub> )           | $\ln(z_{0m}/z_{0h})=7.36, 10^{-7} \sim 10^{-8} \text{ m}$                                                            | 1.9×10 <sup>-6</sup> m                                                                                            |
| Roughness length of moisture (z <sub>0q</sub> )       | $\ln(z_{0m}/z_{0q})=7.48, \ 10^{-7} \sim 10^{-8} \text{ m}$                                                          | 3.9×10 <sup>-8</sup> m                                                                                            |

#### Example: Convective mixing off



#### Example: Convective mixing on



## **Modeling Cases**

|              | Validation         | Retrospection     | Forecast                |
|--------------|--------------------|-------------------|-------------------------|
| Period       | 2014-2016          | 1979-2016         | 2017-2100               |
| Forcing data | Obs and NLDAS      | NLDAS             | GFDL-ESM2G under RCP8.5 |
| Spin-up data | 2004-2013 of NLDAS | 10x 1980 of NLDAS | 2006-2016 of GFDL-ESM2G |

- NLDAS: North American Land Data Assimilation System project phase 2(NLDAS-2) Primary Forcing Data L4 (Xia et al., 2012)
  - Hourly, 0.125 x 0.125 degree
- GFDL-ESM2G: one of the climate models in the fifth phase of the Coupled Model Intercomparison Project (CMIP5) (Dunne et al., 2012)
  - 3-hourly, 2.0 x 2.5 degree

#### Validation Outputs



#### Ice Phenology



#### **Retrospective Evaporation**



#### Annual Evaporation from 2014 to 2016

| Year<br>& Observation       | Sources of Evaporation and | lce-out<br>date | Ice-in date  | Ice-free<br>days | Daily E | Annual E | Averaged |
|-----------------------------|----------------------------|-----------------|--------------|------------------|---------|----------|----------|
| Period (days <sup>×</sup> ) | ice prenology data         | uate            |              | uays             | ()      | ()       | (mm)     |
| 2014                        | EC, MNDNR                  | Apr 23          | *Nov 17      | 209              | 2.60    | 543      |          |
| Jul 18                      | Weighted EC, MNDNR         | Apr 23          | *Nov 17      | 209              | 2.56    | 535      |          |
| to Nov 14                   | Validation modeling        | Apr 22          | Nov 28       | 221              | 2.57    | 567      | 559±22   |
| (102)                       | Retrospective modeling     | Apr 20          | Dec 3        | 228              | 2.59    | 590      |          |
| 2015                        | EC, MNDNR                  | Apr 2           | Dec 30       | 273              | 3.35    | 915      |          |
| May 8                       | Weighted EC, MNDNR         | Apr 2           | Dec 30       | 273              | 2.79    | 763      | 770+01   |
| to Oct 31                   | Validation modeling        | Apr 3           | Dec 16       | 258              | 2.75    | 709      | //9±81   |
| (177)                       | Retrospective modeling     | Apr 9           | (2016) Jan 1 | 268              | 2.73    | 731      |          |
| 2016                        | EC, MNDNR                  | Mar 16          | Dec 10       | 270              | 2.88    | 778      |          |
| Mar 25                      | Weighted EC, MNDNR         | Mar 16          | Dec 10       | 270              | 2.77    | 748      | 766111   |
| to Nov 30                   | Validation modeling        | Mar 13          | Dec 15       | 278              | 2.78    | 773      | 100111   |
| (251)                       | Retrospective modeling     | Mar 25          | Dec 15       | 266              | 2.87    | 764      |          |

× The integrated days does not include the missing days within observation period.
\* No record from MNDNR, filled by the MODIS data.

#### Part 4: Evaporation and Water Level

A regional drought and potential intensified groundwater use can have a dramatic impact on water level at a closed-basin lake



#### **Future Climate Change Scenarios**



Evaporation under RCP8.5 Scenario



### Conclusions

- The annual evaporation at WBL from 2014 to 2016 was 559±22, 779±81, and 766±11 mm, respectively. The annual evaporation in 2014 was least among the three years, due to its relatively short ice-free period and its relatively lower daily evaporation rate.
- The retrospective analyses indicated that WBL evaporation increased by about 3.8 mm yr<sup>-1</sup> from 1979 to 2016, which was attributed to both increased daily mean evaporation and the extended ice-free period.
- Annual evaporation at WBL will increase 1.4 mm yr<sup>-1</sup> over this century under the RCP 8.5 scenario, which is largely driven by the extended ice-free periods.

#### Regional Implications for Lake Water Levels

- Lake levels within the region are closely coupled to evaporation
  - The lake level declines at WBL during 1986–1990 and 2003– 2012 were caused by the coupled low precipitation and high evaporation
- Small changes in the evaporation rate or ice phenology can have significant impacts on available water for the communities
  - For WBL, a typical evaporation rate of 5 mm per day during the summer is equivalent to 4.9×10<sup>4</sup> m<sup>3</sup> of water or roughly 0.5 m<sup>3</sup> s<sup>-1</sup> of continuous 24-hour pumping
  - Given an advanced ice-out date or postponed ice-in date of just one day is likely to result in an additional water loss of 2×10<sup>4</sup> m<sup>3</sup>

#### Regional Implications for Lake Water Levels

- A tendency for increased likelihood of lower water levels and greater fluctuations in water level for WBL and other lakes within the region are expected
  - Lake evaporation is expected to increase due to the extended ice-free period as climate continues to warm
- Proposed water augmentation strategies within the region must be aware of the potential changes in supply and demand as climate continues to warm
  - Per capita water use in Minnesota is about 0.23 m<sup>3</sup> d<sup>-1</sup> per person (Maupin et al., 2014). The additional 100 mm of evaporation at WBL resulting from the long-term change in climate is equivalent to the annual water use of over 11,000 people

## Acknowledgements

- Advisor: Timothy Griffis <sup>a</sup>
- Co-authors: John M. Baker<sup>a,b</sup>, Paul V. Bolstad<sup>c</sup>, Matt D. Erickson<sup>a</sup>, Xuhui Lee<sup>d,e</sup>, Jeffrey D. Wood<sup>a,f</sup>, and Cheng Hu<sup>e</sup>
  - <sup>a</sup> Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
  - b USDA-ARS Soil and Water Research Unit, Saint Paul, Minnesota, USA
  - <sup>c</sup> Department of Forest Resources, University of Minnesota, Twin Cities, Saint Paul, Minnesota, USA
  - <sup>d</sup> School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
  - e Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing, Jiangsu, China
  - <sup>f</sup>School of Natural Resources, University of Missouri, Columbia, Missouri, USA
- Neighborhood: The Nicholson Family, The Becker Family
- Financial Support
  - AmeriFlux core site funding provided by the U.S. Department of Energy's Office of Science
  - United States Department of Agriculture Agriculture Research Service
  - Minnesota Corn Research and Promotion Council [4101-15SP]
  - Minnesota Department of Natural Resources
  - WBL Conservation District

# Thank you!