## **Evaluation of VOCs emission inventory by ambient measurements**

Ming WANG, Min SHAO, Wentai CHEN, Sihua LU

2015-12

- **1. Emission inventories**
- **2. Emission ratios**
- 3. Trend analysis

### The regional pollution of $O_3$ and $PM_{2.5}$ in Eastern China



Zhao et al., 2009; Zhang et al., 2015

# VOCs played an important role in atmospheric chemistry



#### The importance of VOCs emission inventory



- > VOC play an important role in  $O_3$  and SOA formation;
- The VOC emission inventory is an necessary input for air quality model to simulate secondary pollutants and investigate their formation mechanisms.

- **1. Emission inventories: a big challenge**
- **2. Emission ratios**
- 3. Trend analysis

## **VOCs emission inventory: a big challenge**



#### **Comparison of VOC emissions in Beijing**



8

#### **Comparison of VOC sources in Beijing:** Contributions of transportation-related emission



### **Comparison of VOC sources in Beijing:**

**Contributions of industrial emissions** 



## Summary

- These comparisons among different emission inventories revealed the large uncertainty of VOC emissions and sources in Beijing.
- However, these comparisons could not quantify this uncertainty, and could not identify which emission inventory is more accurate.

#### **Evaluation of VOCs EI based on measurements**



#### Field measurements of ambient VOCs in Beijing



16 months regional measurements (July 2009-Jan.2011) at 27 sites in Beijing.

#### **Online VOCs measurements at the PKU site**

| Year | Instruments                             | Observation period (time resolution) | Reference            |
|------|-----------------------------------------|--------------------------------------|----------------------|
| 2002 | Online GC-FID (PKU)                     | September 8-30 (30 min);             |                      |
| 2004 | Canister-offline GC-MS/FID <sup>a</sup> | August 11–20                         | (Lu et al., 2007)    |
| 2005 | Online GC-MS/FID (ESRL)                 | August 1–27 (30 min)                 | (Liu et al., 2009a)  |
| 2006 | Online GC-FID (RCEC)                    | August 15–24 (1 h)                   | (Xie et al., 2008)   |
| 2007 | Online GC-FID/PID                       | August 7–31 (30 min)                 | (Zhang et al., 2014) |
| 2008 | Online GC-MS/FID (RCEC)                 | July 27–August 30 (1 h)              | (Wang et al., 2010a) |
| 2009 | Online GC-FID/PID                       | August 8–31 (30 min)                 | (Zhang et al., 2014) |
| 2010 | Online GC-MS/FID (PKU)                  | August 12–31 (1 h)                   | (Yuan et al., 2012)  |
| 2011 | Online GC-MS/FID (PKU)                  | August 3–September 13 (1 h)          | (Wang et al., 2014a) |
| 2012 | Online GC-MS/FID (PKU)                  | August 1–31 (1 h)                    |                      |
| 2013 | Online GC-MS/FID (PKU)                  | August 7–25 (1 h)                    |                      |

## 65 VOC species were quantified under QA/QC

| Alkanes(28)        |                            | Alkenes (12)    | Aromatics (14)             | OVOC (11)    |
|--------------------|----------------------------|-----------------|----------------------------|--------------|
| Ethane*            | n-Heptane                  | Ethene*         | Benzene                    | Methanol     |
| Propane*           | 2-Methylhexane             | Propene*        | Toluene                    | Formaldehyde |
| n-Butane*          | 3-Methylhexane             | 1-Butene*       | Ethylbenzene               | Acetaldehyde |
| i-Butane           | 2,4-Dimethylpentane        | 1,3-Butadiene   | m/p-Xylene                 | Propanal     |
| n-Pentane          | 2,3-DimethylPentane        | trans-2-Butene  | o-Xylene                   | n-Butanal    |
| i-Pentane          | Methylcyclohexane          | cis-2-Butene    | Styrene                    | n-Pentanal   |
| Cyclopentane       | n-Octane                   | 1-Pentene       | i-Propylbenzene            | n-Hexanal    |
| n-Hexane           | 2-Methylheptane            | Isoprene        | n-Propylbenzene            | Acetone      |
| 2-Methylpentane    | 3-Methylheptane            | trans-2-Pentene | m-Ethyltoluene             | MEK          |
| 3-Methylpentane    | 2,2,4-<br>Trimethylpentane | cis-2-Pentene   | p-Ethyltoluene             | MACR         |
| 2,2-Dimethylbutane | 2,3,4-<br>Trimethylpentane | 1-Hexene        | o-Ethyltoluene             | M∨K          |
| 2,3-Dimethylbutane | n-Nonane                   | Ethyne          | 1,3,5-<br>Trimethylbenzene |              |
| Cyclohexane        | n-Decane                   |                 | 1,2,4-<br>Trimethylbenzene |              |
| Methylcyclopentane | n-Undecane                 |                 | 1,2,3-<br>Trimethylbenzene | 15           |

## **Top-down approaches to evaluating VOCs El**

| Approaches      |                                         | Emission     | Source       | Spatial distribution | Temporal variation |
|-----------------|-----------------------------------------|--------------|--------------|----------------------|--------------------|
|                 | Flux<br>measurements,<br>box model etc. | $\checkmark$ |              |                      |                    |
| Receptor-       | Emission ratio                          | $\checkmark$ |              |                      |                    |
| oriented        | Trend analysis                          | $\checkmark$ |              |                      | $\checkmark$       |
|                 | Receptor model                          |              | $\checkmark$ |                      |                    |
|                 | Regional measurements                   |              |              | $\checkmark$         |                    |
| Model-<br>based | Air quality model<br>(Forward, inverse) | $\checkmark$ | $\checkmark$ | $\checkmark$         | $\checkmark$       |

- **1. Emission inventories**
- **2. Emission ratios: estimate VOC emissions**
- **3. Trend analysis**

#### **Emission ratio (ER) of VOC:**

the ratio of VOC to reference compound (e.g. CO) in fresh emissions



#### Photochemical evolution of measured ratios of VOC/CO



Calculation of photochemical age:

$$\begin{split} [\text{OH}]\Delta t &= \frac{1}{k_{\text{HC}_1} - k_{\text{HC}_2}} \\ &\times \left( \ln \left( \frac{[\text{HC}_1]_0}{[\text{HC}_2]_0} \right) - \ln \left( \frac{[\text{HC}_1]}{[\text{HC}_2]} \right) \right) \end{split}$$

$$[OH]\Delta t = \frac{[OH]}{k_{\rm A} - k_{\rm B}} \times \left( \ln \left( \frac{[\rm RONO_2]}{[\rm RH]} - \frac{\beta k_{\rm A}}{k_{\rm B} - k_{\rm A}} \right) - \ln \left( \frac{[\rm RONO_2]_0}{[\rm RH]_0} - \frac{\beta k_{\rm A}}{k_{\rm B} - k_{\rm A}} \right) \right),$$

## **Determination of VOC ER from measured ratios**

#### **HC: reaction with OH radical**

$$\frac{[HC]_{t_{M}}}{[CO]_{t_{M}}} = \frac{\mathbf{ER}_{HC} \times \exp(-(k_{HC} - k_{CO})[\mathbf{OH}]\Delta t)$$

**ER: Emission Ratio** Δt: Photochemical age

#### **OVOC: production as well as chemical loss**

$$[OVOC]_{t_{M}} = \underbrace{\text{ER}_{OVOC} \times [CO]_{t_{M}} \times \exp(-(k_{OVOC} - k_{CO})[OH]\Delta t)}_{k_{OVOC} - k_{Precursors}} Anthropogenic emissions$$

$$+ ER_{precursor} \times [CO]_{t_{M}} \times \frac{k_{precursors}}{k_{OVOC} - k_{precursors}} \times \frac{\exp(-k_{precursors}[OH]\Delta t) - \exp(-k_{OVOC}[OH]\Delta t)}{\exp(k_{CO}[OH]\Delta t)}$$

$$+ [biogenic] + [background] Background] Background] + [biogenic] + [background] + [biogenic] + [background] + [biogenic] + [background] + [biogenic] + [background] + [biogenic] + [$$

de Gouw et al., JGR, 2005; Warneke et al., JGR, 2007

#### Four datasets for VOC ERs

#### > Regional VOC measurements at 27 sites in Beijing:

- VOC ERs during summer
- VOC ERs during winter

#### > Online VOC measurements at the PKU site:

- VOC ERs during summer
- VOC ERs during winter

#### Similarity of VOC ERs at different sites



- The VOC ERs obtained at the PKU site showed good agreements with those for regional sites in Beijing.
- The VOC ERs at the PKU site can represent the chemical composition of VOC emissions in Beijing.

#### **Differences of VOC ERs between winter and summer**



The wintertime emission ratios for most VOC species were significantly lower than the summertime values, with the exception of acetylene, alkenes, benzene, ethane, and formaldehyde.

## **Estimation of VOC emissions in Beijing**

SummerWinter(non-heating season)(Heating season) $E_{\text{VOC, A}} = \left( ER_{\text{VOC, S}} \times E_{\text{CO, S}} + ER_{\text{VOC, W}} \times E_{\text{CO, W}} \right) \times MW_{VOC} / MW_{\text{CO}}$ 

 $E_{VOC, A}$ : annual emission of VOC (Gg/year);  $ER_{VOC, S}$ : VOC emission ratio during summer (ppbv/ppmv);  $ER_{VOC, W}$ : VOC emission ratio during winter (ppbv/ppmv);  $E_{CO, S}$ : CO emission during summer (Tg/year);  $E_{CO, W}$ : CO emission during winter (Tg/year);  $MW_{VOC}$ : molecular weight of VOC (g/mol);  $MW_{CO}$ : molecular weight of CO (g/mol).

## Comparison of VOCs emissions derived from

#### measurements with current inventories



- 1. OVOCs emissions estimated based on ambient measurements were higher than those reported by the current inventories;
- 2. The emissions of light alkanes derived from measurements were also higher than those reported by the INTEX-B inventory;
- 3. Styrene and 1,3-butadiene emissions were higher in the INTEX-B inventory. <sup>25</sup>

#### **Ozone formation potential (OFPs)**



The total OFPs derived from measurements agreed relatively well with those calculated based on current inventories;

However, the relative contributions of different VOC groups to the total OFPs showed significant differences. The relative contributions of OVOC were significantly lower in current emission inventories, whereas alkenes contributions were higher.

- **1. Emission inventories**
- **2. Emission ratios**
- 3. Trend analysis: evaluate emission trends

#### Anthropogenic VOCs emission in Beijing during 2002–2012



Anthropogenic VOCs emissions during August in Beijing increased by 35% between 2002 and 2012. However, the measured VOCs mixing ratios during August at urban sites of Beijing exhibited a decreasing trend from 2003.



Year

 This discrepancy of VOC temporal changes between measurements and the MEIC inventory suggests the possible uncertainties of VOC emission trends for one or more sources in this inventory.

#### **Major VOCs sources in Beijing**

- Vehicle exhaust: alkenes and acetylene
- Gasoline evaporation: i-pentane
- Paint and Solvent use: BTEX
- > Natural gas and liquefied petroleum gas use: ethane and propane

(Liu et al., 2005; Song et al., 2007; Wang et al., 2010; Shao et al., 2011; Yuan et al., 2012; Chen et al., 2014; Wang et al., 2014)

#### Vehicle exhaust

• Acetylene and alkenes are mainly emitted from vehicle exhaust (Parrish 2006; Wang et al., 2010; Shao et al., 2011)



2004-2013: acetylene, ethene, and propene decreased by ~60%

## **Gasoline evaporation**

Besides vehicle exhaust, i-pentane can also be emitted from gasoline evaporation (Harely et al., 1998).



#### 2004-2013: i-pentane decreased by ~60%

#### **Paint & Solvent utilization**

Toluene, ethylbenzene, and xylenes are important components of paint and solvent emissions (Yuan et al., 2010).



## Natural Gas (NG) and Liquefied Petroleum Gasoline (LPG) usage



## **VOCs source apportionment by PMF**

- EPA PMF 3.0
- 15 species

| ethane            | toluene            |  |
|-------------------|--------------------|--|
| propane           | <i>m,p</i> -xylene |  |
| <i>i</i> -butane  | <i>o</i> -xylene   |  |
| <i>n</i> -butane  | acetylene          |  |
| <i>i</i> -pentane | ethylene           |  |
| <i>n</i> -pentane | propylene          |  |
| <i>n</i> -hexane  | 1-butene           |  |
| benzene           |                    |  |

- 4 factors
- 2004-2012 data

#### Four PMF factors were identified



#### **Transportation**



The PMF results suggested that the NMHC concentrations from transportation-related sources decreased by 66% between August 2004 and August 2012, which is close to the relative decline of 64% for transportation-related emissions during August in Beijing reported by the MEIC inventory.

#### **Solvent and industry**

#### NMHC concentrations from PMF

## VOC emissions from MEIC



- The PMF results indicate that there were no significant temporal changes in NMHC concentrations during August from 2004 to 2012;
- However, the VOC emissions from solvent use and industry reported by the MEIC inventory increased by 65% between 2004 and 2012.

## **Summary and conclusions**

- OVOC emissions were possibly underestimated by current inventories;
- VOC emissions form solvent use and industry showed large uncertainties;
- More studies are needed in the future to verify VOC emissions from solvent use and industry.

Atmos. Chem. Phys., 14, 5871–5891, 2014 www.atmos-chem-phys.net/14/5871/2014/ doi:10.5194/acp-14-5871-2014 © Author(s) 2014. CC Attribution 3.0 License.





#### A temporally and spatially resolved validation of emission inventories by measurements of ambient volatile organic compounds in Beijing, China

M. Wang<sup>1</sup>, M. Shao<sup>1</sup>, W. Chen<sup>1</sup>, B. Yuan<sup>1,\*</sup>, S. Lu<sup>1</sup>, Q. Zhang<sup>2</sup>, L. Zeng<sup>1</sup>, and Q. Wang<sup>1,3</sup>

<sup>1</sup>State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental

Sciences and Engineering, Peking University, Beijing, China

<sup>2</sup>Ministry of Education Key Laboratory for Earth System Modeling, Center for Earth System Science,

Tsinghua University, Beijing, China

<sup>3</sup>Beijing Municipal Environmental Monitoring Center, Beijing, China

\*now at: NOAA Earth System Research Laboratory and Cooperat Sciences, University of Colorado, Boulder, CO, USA

Atmos. Chem. Phys., 15, 1489–1502, 2015 www.atmos-chem-phys.net/15/1489/2015/ doi:10.5194/acp-15-1489-2015 © Author(s) 2015. CC Attribution 3.0 License.



Min SHAO: mshao@pku.edu.cn Ming WANG: wangmingmelon@163.com

Atmospheric Of Chemistry And Physics



#### Trends of non-methane hydrocarbons (NMHC) emissions in Beijing during 2002–2013

M. Wang<sup>1</sup>, M. Shao<sup>1</sup>, W. Chen<sup>1</sup>, S. Lu<sup>1</sup>, Y. Liu<sup>1</sup>, B. Yuan<sup>1,\*</sup>, Q. Zhang<sup>1</sup>, Q. Zhang<sup>2</sup>, C.-C. Chang<sup>3</sup>, B. Wang<sup>1</sup>, L. Zeng<sup>1</sup>, M. Hu<sup>1</sup>, Y. Yang<sup>1</sup>, and Y. Li<sup>1</sup>

<sup>1</sup>State Joint Key Laboratory of Environmental Simulation and Pollution Control,

College of Environmental Sciences and Engineering, Peking University, Beijing, China

<sup>2</sup>Ministry of Education Key Laboratory for Earth System Modeling,

Center for Earth System Science, Tsinghua University, Beijing, China

<sup>3</sup>Research Center for Environmental Change, Academia Sinica, Taipei 115, Taiwan

\*now at: NOAA Earth System Research Laboratory and Cooperative Institute

for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

## **Thanks for your attention**

