

The Impact of Planetary Boundary
Layer Parameterization Schemes
on Surface Meteorology Field and Air
Pollution Concentration in WRF/CMAQ
model

Reporter: Wang Kefei

Contents:

- Background
- Model and Observation Data
- Results and Discussion
- Conclusion

Background

The Eulerian pollutants diffusion equation is:

$$\frac{\partial \overline{q_i}}{\partial t} + \overline{u} \frac{\partial \overline{q_i}}{\partial x} + \overline{v} \frac{\partial \overline{q_i}}{\partial y} + \overline{w} \frac{\partial \overline{q_i}}{\partial z} = \frac{\partial (\overline{u'q_i'})}{\partial x} + \frac{\partial (\overline{v'q_i'})}{\partial y} + \frac{\partial (\overline{w'q_i'})}{\partial z}$$

Turbulent Term
Use PBL schemes to parameterize the turbulent flux

$$+S_i + R_i + \sum chemis$$

Yale-NUIST Center on Atmospheric Environment

There are two distinctive approaches to parameterize the fluxes in WRF model utilizing 12 closure schemes.

Specificity of YSU scheme (Hong, Noh, & Dudhia, 2006)

the turbulence diffusion equations for prognostic variables $(\xi, u, v, \theta, q, q_c, q_i)$ can be expressed by

$$\frac{\partial q}{\partial t} = \frac{\partial}{\partial z} \left[K_z \left(\frac{\partial q}{\partial z} - \gamma_q \right) - \overline{(w'q')_h} \left(\frac{z}{h} \right)^3 \right]$$

asymptotic entrainment flux term at the inversion layer

Above the mixed layer (z >h), a local diffusion approach is applied to account for free atmospheric diffusion.

Specificity of MYJ scheme

Only local transport is allowed. The TKE (*e*) prognostic equation is expressed by,

$$\frac{\partial \mathbf{e}}{\partial \mathbf{t}} = -\frac{\partial}{\partial \mathbf{z}} \left(\overline{\mathbf{w}' \mathbf{e}'} + \frac{1}{\rho} \overline{\mathbf{w}' \mathbf{p}'} \right) - \overline{\mathbf{w}' \mathbf{u}'} \frac{\partial \mathbf{u}}{\partial \mathbf{z}} - \overline{\mathbf{w}' \mathbf{v}'} \frac{\partial \mathbf{v}}{\partial \mathbf{z}} + \frac{\mathbf{g}}{\theta_{\mathbf{v}}} \overline{\mathbf{w}'^{\theta_{\mathbf{v}'}}} - \varepsilon$$

For TKE closure schemes, the diffusivity can be commonly expressed as (Bosveld et al., 2014):

$$K = S_c \ell_m e^{0.5}$$

The TKE schemes differ in S_c and ℓ_m , and MYJ scheme is the most widely used TKE scheme.

Yale-NUIST Center on Atmospheric Environment

Specificity of ACM2 scheme(Pleim, 2007)

This PBL scheme is a combination of the local and non–local mixing approach. The prognostic mean variables at layer i for ξ are given by,

$$\frac{\partial \xi_{i}}{\partial t} = \frac{f_{conv}Mu\xi_{i}}{(1)} - \frac{f_{conv}Md_{i}\xi_{i}}{(2)} + \frac{f_{conv}Md_{i+1}\xi_{i+1}}{(3)} \frac{\Delta z_{i+1}}{\Delta z_{i}} + \frac{\partial}{\partial z} \left(K_{\xi}(1 - f_{conv})\frac{\partial \xi}{\partial z}\right) \tag{4}$$

ACM₂

Thus, the ACM2 is able to represent both the supergrid— and subgrid—scale components of turbulent transport in the convective boundary layer

WRF/CMAQ

Using WRF/CMAQ to evaluate the model performances of simulating pollutants by 3 widely used PBL schemes (YSU,ACM2,MYJ).

There are several heavy pollution case in Jan.2015, and we have detailed observation data during 23~25.Jan.

Simulation Characteristics

Domain Num.	1	2			
Period	0800 23.Jan 2015 ~ 0800 25.Jan 2015(LST)				
Initial condition meteorology	NCEP(6h, 1°)				
Domain center location	33.0° N, 119.0° E				
Initial condition chemistry	Spin-up by YSU scheme				
Vertical level	52				
Horizontal grid	WRF: 180×150 ;	WRF: 150×150 ;			
	CMAQ: 160×130	CMAQ: 130×130			
Horizontal resolution	15km	5km			
Time step	60s				
Other options	Default				

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Meteorological station distribution

Number	City	Station	Longitude	Latitude	Observations
		Number			
(a)	Nanjing	58235	118.51	32.22	pressure, temperature, wind components,
(b)		58237	118.35	32.04	wind direction, relative humid
(c)		58238	118.54	31.56	
(d)		58339	118.54	31.2	
(e)		58340	119.02	31.39	
(f)	Suzhou	58349	120.34	31.25	
(g)		58352	120.46	31.39	
(h)		58353	120.34	31.52	
(i)		58356	121.00	31.24	
(j)		58358	120.26	31.04	
(k)		58359	120.37	31.08	
(1)		58377	121.06	31.31	

Tethersonde station distribution

Number	Station	Longitude	Latitude	Observation
(m)	Nanjing	118.94	32.12	Height, temperature ,wind
	Nanyou			speed, wind direction,
(n)	Suzhou	120.26	31.04	relative humid
	Dongshan			

Yale

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Results and discussion

- Surface Meteorological variables validation
 - Surface meteorological variables
 - Tethersonde profile
- Air Pollutants simulation comparison
 - Gaseous pollutants
 - Particulate pollutants
 - Case Analysis

Yale-NUIST Center on Atmospheric Environment

Surface Temperature at 2m

Yale-NUIST Center on Atmospheric Environment

Surface Relative Humid at 2m

Yale-NUIST Center on Atmospheric Environment

Surface Wind Speed at 10m

Potential Temperature Profile

Nanyou station,(a) 08:00 23.Jan, (b)14:00, (c)20:00, (d) 02:00 24.Jan, (e)08:00,(f)14:00, (g) 20:00

Dongshan station,(a) 08:00 23.Jan, (b)14:00, (c)20:00 (d)08:00 24.Jan, (e)14:00

No much differences

Relative Humid Profile

Nanyou station,(a) 08:00 23.Jan, (b)14:00, (c)20:00, (d) 02:00 24.Jan, (e)08:00,(f)14:00, (g) 20:00

Similar to potential temperature profile

Dongshan station,(a) 08:00 23.Jan, (b)14:00, (c)20:00 (d)08:00 24.Jan,(e)14:00

R **RMSE** Ε Yale 耶鲁大学-南京信息工程大学大气环境中心 ACM2 -0.07 139.2 3.56 0.15 Yale-NUIST Center on Atmospheric Environment -0.1 118.3 3.05 0.18 SO₂ Concentration YSU 0.06 139.0 3.53 0.18 400 连云港

0.58

0.49

0.62

Case Analysis:

For Nanjing station, there are obvious differences during 0800 24.Jan to 1800 24.Jan.

Nanyou station was selected to study further.

Yale-NUIST Center on Atmospheric Environment

Non-local schemes
have the highest PBLH
and virtual potential
temperature with a little
breakthrough to the
inversion layer.

Virtual potential temperature versus height and time (a)ACM2 ,(b)MYJ ,(c)YSU

Yale

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Nanyou station results compare

The main differences are reflected in PBL Height, u* and wind speed, where wind speed plays the most significant role.

- As can be seen from the current study, the simulation results of different PBL schemes have a more significant differences when temperature is relatively high. The PBL schemes affect turbulence diffusion and PBL height as well as pollutants concentration.
- This case indicates that vertical turbulence mixing mechanism differs in PBL schemes, where MYJ scheme has the weakest mixing effect during noon, leading to a lower PBL height. However MYJ scheme also has the maximum wind speed, thus simulating a lowest pollution concentration. Meanwhile, YSU and ACM2 not differ greatly.

- The pollutant emission source used in this study results in a lower O3
 ,PM2.5 and PM10 simulation concentration, but a obviously higher
 NO2 and SO2 simulation concentration. In the latter part of the study,
 we should change the emission source.
- This study only analysis a single heavy pollution case of 23.Jan 2015 to 25.Jan 2015. Whether the preliminary conclusions can be applied to other weather condition still needs a further discussion.

Thanks!