

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Temporal and spatial variations of CO₂ in Nanjing

3-SCALE OBSERVATIONS

2013.5.10

Temporal and spatial variations of CO_2 of street-level in Nanjing (Summer)

Temporal and spatial variations of CO_2 of street-level in Nanjing (Winter)

Temporal and spatial variations of CO_2 in fixed point observation in Nanjing (within mixed layer height)

Temporal and spatial variations of CO_2 in fixed point observation in Nanjing (mixed layer height)

Temporal and spatial variations of street-level CO₂ in Nanjing

Reporter : Wang Shumin Gao Yunqiu Deng Lichen Li Hanchao

- Introduction
- Methods
- Results
- Discussion and summary
- Inspiration

- Urban environments can change the local climate. The urban is net CO₂ source. They can affect the life of an increasing proportion of the world 's population that lives in and around cities (Onil Bergeron, Ian B. Strachan, 2011).
- Among the largest carbon dioxide emitters in the world (IEA, 2009), China has been considered responsible for two thirds of the global increase in anthropogenic carbon dioxide emissions of 3.1% in 2007 (Yan and Yang, 2010).
- We observe Nanjing CO₂ concentration in order to quant ify carbon emissions and calculate parameters for carbon models.

Experimental design :

Fig. 1. Schematic of selected lines in Nanjing taken from Google Earth

 \geq Instrument : LI -840A CO₂ /H₂O gas analyzer

Time : 6/6 (THU) 9/6 (SUN \ Dragon Boat Festival) 14/6 (FRI) 15/6 (SAT) 17/6 (MON)

 $06{:}00{:}00 \hspace{0.1cm} 07{:}30{:}00 \hspace{0.1cm} 11{:}30{:}00 \hspace{0.1cm} 17{:}30{:}00 \hspace{0.1cm} 22{:}00{:}00$

Fig.3. Diurnal variation of CO₂ concentrations of three days. Line 2 (g,h,i represents 0614,0615,0617, respectively.);Line 3 (j,k,l represents 0614,0615,0617,respectively.)

10

Fig.4. Frequency distributions of CO₂ concentrations for line 1 and line 4

Fig.5. Frequency distributions of CO_2 concentrations for line 2 and line 3

Fig.6. Frequency distributions of CO₂ concentrations for each line

(a)		06:00	07:30	11:30	17:30	22:00	
	Line 1	444.76	480.15	453.71	462.80	431.14	
	Line 4	434.19	478.54	452.89	458.41	430.56	Tab.1.
	Line3	446.18	475.58	433.71	464.87	429.18	Averag
	Line 2	423.28	454.67	430.10	441.90	412.07	concen
	ZSL	435.10	429.26	424.11	412.58	414.99	rations
	YF	385.78	373.02	381.03	355.88	357.583	(ppm) o
(b)		06:00	07:30	11:30	17:30	22:00	four
	Line 1	459.15	483.57	497.19	475.38	483.60	lines
	Line 4	446.69	471.31	481.20	473.29	485.20	and two
	Line3	451.21	477.62	487.04	475.53	463.22	(ZSL
	Line 2	421.47	NaN	454.99	482.48	450.32	and
	ZSL	441.75	442.42	459.30	442.81	481,66	YF),
	YF	367.49	394.81	377.77	365.28	379.62	a,b,c
(c)		06:00	07:30	11:30	17:30	22:00	repres-
	Line 1	476.19	524.19	446.04	471.87	447.54	ents 0614
	Line 4	465.91	510.41	459.52	472.19	466.98	0615,
	Line3	468.40	520.80	462.96	467.24	444.66	0617,
	Line 2	460.45	505.01	430.35	457.61	433.40	respe-
	ZSL	469.77	467.56	473.68	461.99	481.67	ctively.
	YF	361.06	344.99	323.09	320.13	343.62	14

Fig.7. Average diurnal pattern of CO₂ concentrations (ppm) of two sites (XJK and ZSL),a,b,c represents 0614,0615,0617, respectively.

Fig.8. CO₂ concentrations (ppm) for parking of line 4 (20130617_4_1)

Fig.9. CO₂ concentrations (ppm) for parking of line 4 (20130617_4_2)

Discussion and summary

- CO₂ concentrations showed obvious diurnal variation.
- Different lines had certain differences in f requency distributions during the three days.
- The highest values of each average CO₂ concentrations were not observed in the same time during the three days.
- The average CO₂ concentrations in daytime of XJK was higher than ZSL's, while the nighttime's values was opposite.
- We found that the higher CO_2 concentrations happened after parking which was not the same as we expected before.

- We are not sure that the values we observed is representative and significant.
- We should be skilled in LI-840A in case of any emergency.
- Paper experimental records are very necessary, especially in these street-level tests.
- We should consider the differences among instruments before data processing.

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Temporal and spatial variations of CO₂ in fixed point observation in Nanjing

Reporter : Gao Yunqiu Wang Shumin Deng Lichen Li Hanchao

- Introduction
- Methods
- Results
- Discussion and summary
- Inspiration

- Urban ecosystem is the main source of CO₂ (Moriwakia, R., 2004) and the CO₂ emission is much higher than the suburbs and the natural landscape (Ziska et al., 2004; Zhao et al., 2010).
- Urban and suburban areas, despite covering only 2.4% of the earth's surface (Potere et al., 2007), are responsible for over 80% of CO₂ emissions to the atmosphere *(Turner et al., 1994)*.
- We observe Nanjing CO₂ concentration in order to quantify carbon emissions and calculate parameters for carbon models.

> Instrument : LI -840A CO $_2$ /H $_2$ O gas analyzer

Time : 20130628(14:00)~20130804(14:00) 20130804(15:30)~20130805(15:30)

> Measurements sites:

Xinjiekou(9F) Bailuzhou(5F) Jiuxiaoqu(5F) Shengjunqu(7F) & Hehai(4F) Xinxiaoqu(3F)

(a) Schematic of measurement sites location

(b) Surrounding environment of measurement sites

Fig. 1. Map of Nanjing around the measurement sites taken from Google Earth

Fig. 2. Frequency distributions of CO₂ concentrations of six mearsurement sites (0728_14:00~0804_14:00)

Fig. 3. Weekly pattern of CO₂ concentrations for the entire study (0728_14:00~0804_14:00)

Tab.1. Average CO_2 concentrations (ppm) of five measurement sites

	total	weekday	weekend
Xinjiekou	417.4623	419.1034	412.4839
Xinxiaoqu	412.4136	414.1008	411.4503
Jiuxiaoqu	411.0746	413.2485	404.5179
Hehai	409.1151	411.064	405.7072
Bailuzhou	396.9968	398.4507	392.7355

Fig. 4. Average diurnal pattern of CO₂ concentrations for the weekdays

The CO_2 concentrations show ed a clear diurnal pattern. The highest concentrations occurred between 6:00 and 8:00 with a range from 420 to 445 ppm. The lowest CO_2 concentrations were observed during afternoon.

Fig. 5. Average diurnal pattern of CO₂ concentrations for the weekends

The CO_2 concentrations showed a clear diurnal pattern. The highest concentrations occurred between 7:30 and 9:00 with a range from 410 to 440 ppm. The lowest CO_2 concentrations were observed during afternoon.

Fig. 6. Average diurnal pattern of CO₂ concentrations of two sites in Xinjiekou 20130804_15:30~20130805_15:30

These two sites' diurnal pattern shared the same trend and Road's concentration is 18.6 ppm higher than the Market 's on average. Three daily average values of CO_2 concentration from different heights were 474.6ppm(street), 396.3ppm(Market) and 414.9ppm(Road).

Discussion and summary

Consistent with the expected, in the different underlying surface s, CO_2 concentrations showed certain differences and some of them were significant. In our experiment, Xinjiekou 's concentrations were the highest and Bailuzhou's were the lowest.

Traffic had certain contribution to carbon emissions, but we were not sure whether the '18.6 ppm' were the true value come from traffic emissions.

We still doubt whether the heights we chose were suitable.

It is necessary that the instrument needs to be checked regularly. It may stop working, record the same value which is obviously wrong, record wrong date and so on.

We should be good at calibration process in case of something unexpected like screw slippery of pressurereducing valve.

Something wrong with calibration which we cannot explain.

We should consider the differences among instruments before data processing.

