

Yale-NUIST Center on Atmospheric Environment

Optimization of VPRM with the measurements at a coniferousevergreen forest site

Liu Cheng

YNCenter Weekly Video Conference 2014.06.27

Outline

- Motivation and objectives
- Introduction of VPRM
- Data and method
- Results and discussion
- Summary
- On-going work

Motivation and objectives

- Surface vegetation flux model is critical to accurate quantification of Net Ecosystem Exchange (NEE) of CO₂ (*Fung et al., 1987; Sellers et al., 1996; Xiao et al., 2002, 2004*). VPRM (Vegetation Photosynthesis and Respiration Model) is one of them.
- Features and application of VPRM:
- Model structure is made simple to facilitate subsequent inverse analysis (just four adjustable parameters: λ , PAR₀, α, β).
- VPRM assimilates remote sensing, meteorological, and tower flux data, so it can provides a much finer representation of surface fluxes than in previous simple models.

Motivation and objectives (cont.)

The WRF-VPRM model has limited capability of capturing NEE diurnal pattern well with default parameters in VPRM (*Diao et al., 2014, under* review)

> Objectives:

To identify more realistic parameters for VPRM based on the surface or tower flux measurements and eventually better simulate spatial and temporal variations in CO_2 .

VPRM model framework

Fig.1 Schematic diagram of the VPRM model (Mahadevan et al., 2008)

- **Δ**: The product of the maximum quantum yield (~1/6)
- T_{scale}: temperature; P_{scale}: leaf phenology; and W_{scale}: canopy water content
- FAPAR_{PAV}: The fraction of incident light absorbed by vegetation in the canopy
- PAR₀: half-saturation value of PAR
- α , β: adjustable by tower flux data for each vegetation type

Data

- **Tower flux data**: CO_2 flux data (F_c) observed at half hour interval at QYZ site (2010-2011).
- Meteorology data: Radiation, temperature, precipitation, relative humidity, etc. (2010-2011).
- Satellite data: 8-d mean MODIS surface reflectance data (MOD09A1) for red (620–670 nm), NIR (841– 876 nm), blue (459–479 nm), and SWIR (1628–1652 nm) to calculate EVI and LSWI (2010-2011).

$$EVI = G \times \frac{(\rho_{nir} - \rho_{red})}{\rho_{nir} + (C_1 \times \rho_{red} - C_2 \times \rho_{blue}) + L} \qquad LSWI = \frac{\rho_{nir} - \rho_{swir}}{\rho_{nir} + \rho_{swir}} \quad (Xiao \ et \ al., \ 2004a, \ 2004b)$$

Method

 Tower observed data in 2010 at QYZ site are used to determine VPRM model parameters λ, PAR₀, α, β; and the data in 2011 are used to validate the VPRM performance on NEE simulations.

Parameter optimization method

> Approach 1: using traditional Michaelis-Menten equation to get λ and PAR₀. GEE = $\alpha \times PPFD \times GEE_{max}/(\alpha \times PPFD + GEE_{max})$

> Approach 2: using VPRM calculate equation to optimize λ and PAR₀.

 $GEE = (\lambda \times T_{scale} \times W_{scale} \times P_{scale}) \times FAPAR_{PAV} \times 1/(1 + PAR/PAR_0) \times PAR$

Flux data processing

- I. Coordinate rotation and the WPL correction, calculate the CO₂ storage within the canopy;
- 2. Flux values were excluded if rain or snow was falling;
- 3. Set the threshold of flux data to [-1, 1] mg m⁻²s⁻¹;
- 4. Flux values were excluded if ustar (u^{*}) was below a threshold of 0.2 m/s at night;

Model setup

- For evergreen forest, plants should grow all year round, so we set P_{scale} to 1.0.
- For parameters λ, PAR₀, α, β, we use the optimized value, for T_{min}, T_{max}, T_{opt}, we adopt default value.
- The model input and output resolution is half hour, so we generate half hourly data from the smoothed time series of vegetation indices (EVI and LSWI).

Results and discussion

Table1. A comparison between the default parameters and the parameters derived from observed data at QYZ site

Approach\value	λ (μmol CO ₂ m ⁻² s ⁻¹ / μmol PPFD m ⁻² s ⁻¹)	PAR ₀ (µmol PPFD m ⁻² s ⁻¹)	α (μmol CO ₂ m ⁻² s ⁻¹ /°C)	β (μmol CO ₂ m ⁻² s ⁻¹)
Default ¹	0.114	790	0.153	1.56
Approach 1	0.0604	379	0.156	0.944
Approach 2 ²	0.197	550	0.156	0.944

1.Default: **DONALDSON site** (slash pine forest), (29.755°N, 82.163° W), Florida, United States. *Clark et al.*, *1999*, *2004*.

2. Approach 1,2: **QYZ site**: (26.733°N, 115.05° E), JiangXi province, China. *Liu et al., 2006*.

Sunny days

Fig.1 Comparison of simulated NEE, GEE, RESP with observations at QYZ site during the day 225-230 of 2011

Fig.2 Time series of PAR and temperature at QYZ site during the day 225-230 of 2011

Cloudy and rainy days

Fig.3 Comparison of simulated NEE, GEE, RESP with observations at QYZ site during the day 120-125 of 2011

Fig.4 Time series of PAR and temperature at QYZ site during the day 120-125 of 2011

Fig.5 A comparison between the observed and VPRM mean diurnal variation of NEE during the peak growing season (april-september) of 2011 at QYZ site

Fig.6 Regression analysis between the observed and VPRM mean diurnal variation of NEE during the peak growing season (april-september) of 2011 at QYZ site

Fig.7 Regression analysis between the observed and modeled half hourly NEE during all year of 2011 at QYZ site (black dot is default value, blue dot is optimized value)

Fig.8 Time series of the observed and modeled half hourly NEE during April, May, June of 2011 at QYZ site

Fig.9 Time series of the observed and modeled half hourly NEE during July, August, September of 2011 at QYZ site

	Vec. 2011	slope	Intercept	R ²	RMSE	Mean Bias	Ν
	Year 2011		(µmol m ⁻² s ⁻¹)		(µmol m ⁻² s ⁻¹)	(μ mol m ⁻² s ⁻¹)	
Optimized	Hourly NEE of growing season	0.77	-6.042	0.630	4.705	-2.216	4178
	Hourly NEE of all year	0.73	-2.091	0.563	4.636	-0.975	7392
	Mean diurnal variation	1.019	-0.9318	0.970	1.318	-0.955	48
Default	Hourly NEE of growing season	0.566	-0.0975	0.644	3.341	1.934	4178
	Hourly NEE of all year	0.53	0.4091	0.586	3.182	2.386	7392
	Mean diurnal variation	0.724	1.472	0.977	0.8409	1.818	48

Table 2. Statistical results between simulation and observation

Summary

- Two different methods are used to derive VPRM parameters. Using VPRM calculate equation to optimize λ and PAR₀ is better than traditional Michaelis-Menten equation.
- Four parameters (λ, PAR₀, α, β) of VPRM model are optimized using tower measurements at QYZ site; After optimization, λ is 0.197µmol m⁻²s⁻¹/µmol m⁻²s⁻¹, PAR₀ is 550 µmol m⁻²s⁻¹, α is 0.156 µmol CO₂ m⁻²s⁻¹/°C, β is 0.944 µmol CO₂ m⁻²s⁻¹.
- Using the optimized parameters, VPRM has much better performance on capturing NEE diurnal pattern, especially for the daytime NEE peak value.

On-going work and next step

To apply the similar method to determine VPRM parameters for more types of representative vegetation in China.

To test the impact of the VPRM parameters on simulations of CO₂ in WRF/GHG (i.e., WRF/VPRM).

Thank you!