

Testing of WRF-GHG on simulation of atmospheric methane in Yangtze River Delta region

Liu Cheng 2013-08-09

Brief description of WRF-GHG

A case study

Next steps

Coupling GHG with WRF/Chem

WRF-Chem package

Four additional modules are added to WRF-Chem and some minor modifications required by WRF-Chem itself.

Registry.ghg

$CH4_1$	total atmospheric CH_4 concentration
$CH4_2$	changes in CH ₄ concentration from wetland emissions
$CH4_3$	changes in CH ₄ concentration from anthropogenic emissions
$CH4_4$	changes in CH ₄ concentration from biomass burning
$CH4_5$	changes in CH ₄ concentration from termite emissions
$CH4_6$	changes in CH ₄ concentration from soil uptake
$CH4_7$	changes in CH ₄ concentration from vegetation
$CH4_B$	atmospheric CH ₄ background concentration

CH₄ variables defined in WRF/GHG

CH_4		
fl_wet	ext. wetland	hourly [30]
fl_ant4	ext. anthropogenic	daily [1]
fl_antch4	ext. anthropogenic	hourly [30]
fl_bbch4	ext. biomass burning	daily [1]
bb_ch4	3d int. biomass burning	WRF timestep
fl_term	ext. termite emission	daily [1]
fl_soilu	ext. soil uptake	hourly [30]
fl_veg	ext. vegetation	hourly [30]
ch4_emiss	int. wetland	WRF timestep
$ch4_term$	int. termite emission	WRF timestep
ch4_soil	int. soil uptake	WRF timestep
ch4_veg	int. vegetation	WRF timestep

CH₄ flux variables defined in WRF/GHG

Linkage of emission with CH₄ concentration

$$conv_{-}rho(i,1,j) = \frac{1}{rho(i,1,j)[\frac{kg}{m^3}]} \times \frac{dt[s]}{dz8(i,1,j)[m]}.$$

Here rho(i, 1, j) denotes the air density in the first model layer, dt the time step of the model and dz8(i, 1, j) the thickness of the first model layer in [m].

Calculation of CH₄ fluxes

- Online calculation of CH₄ wetland flux
- Flux from termite
- Flux from soil uptake
- Flux from vegetation
- Flux from biomass burning

Kaplan online calculation of CH₄ flux

Inputs

- C_pool (external carbon pool, LPJ model [sitch et al.,2003])
- Wetland_map (Kaplan potential wetland map, wetland fraction/grid)
- Soil parameters (T_soil, Soil _type; Soil_M, etc.)

Outputs

- CH₄_wet (CH₄ wetland emission)

$$k_{r} = \frac{\frac{1}{\tau_{0}} \cdot g(T) \cdot f_{SM}}{12 \cdot 24 \cdot 30}.$$

$$f_{SM} = 0.25 + 0.75 \frac{sm}{sm_{sat}}$$

$$f_{SM} = 0.25 + 0.75 \frac{sm}{(sm_{sat})}$$

$$f_{SM} = 0.78 \frac{sm}{(sm_{$$

Kaplan online calculation of CH₄ flux (cont.)

kaplan wetland map

From http://arve.epfl.ch/pub/wetlands/index.html

Anthropogenic emissions of CH₄

- Emission inventory: EDGAR V4 (<u>http://edgar.jrc.ec.europa.eu</u>)
- Resolution: 0.1 $^{\circ}$ imes 0.1 $^{\circ}$
- Base year: 2005
- Processing code: Prep_chem_source (a diurnal cycle peaking twice a day at 08:00 and 20:00 local time using a double Gaussian function are included here)

Kaplan module implemented in GHG

Take "CH4_2" for example

In the namelist.input

chem_c	pt 98
wetla	nd_type
-	
0	no CH ₄ wetland emissions
1	floodplain and peatland CH ₄ wetland emissions
	(Kaplan)
2	only floodplain CH ₄ wetland emissions (Kaplan
3	only peatland CH ₄ wetland emissions (Kaplan)
4	external CH ₄ wetland emissions (Walter)

Module_greenhouse_gases

SELECT CASE(wet_id) CASE(1) call KAPLAN call co2_surface_source_add(...) CASE(4) chem_sourcewet(:,:)=fl_wet(:,:)

WRITE(6,*) 'wetland walter was called'

.....

In chem_driver.F

IF	(config_flags%chem_opt==98) THEN							
	call greenhouse_gases (<pre>chem, num_3d_c, grid%alt, dz8w, grid%dt, grid%xtime,</pre>	8					
		ids,ide, jds,jde, kds,kde,	8					
		ims,ime, jms,jme, kms,kme,	8					
		its,ite, jts,jte, kts,kte,	8					
		config flags%run hours, config flags%co2 anthro.	æ					

Initial and boundary conditions

- Meteorology: NCEP FNL or ECMWF reanalysis data.
- CH₄ and CO₂: three-dimensional fields from global transport models TM5.
- The meteorology is initialized with ECMWF fields, while the tracer variables are initialized with outputs of global chemistry models like MOZART, TM5, or GOES-Chem on the first run and the simulations on the following runs are initialized with the previous day results to ensure continuity.

Steps to run WRF-GHG

- Compile source codes, WRF-GHG and WPS
- Run WPS to process all necessary fields on the predefined WRF grid
- Modify the namelist.input
- Run real.exe
- Use Matalab scripts process ICs/BCs of chemical species
- Run wrf.exe

Three-nested domains

WRF Domain YRD

d1:36km d2:12km d3:4km Vertical levels:40

Namelist setting

vprm_class		= 8,		
vprm_par_iile		= "VPRM_param_CERES2005_local.txt",		
co2_anthro		= 2,	hourly anthropogenic emissions	
wetland_type		= 0,	no CH4 wetland emissions	
file term		= "CH4_termite_NW.txt",		
term_id		= 0,		
bb_opt_ghg plume_frq_ghg		= 0, = 180,		
soil_id		= 1,	Calculation of soil uptake fluxes	
veg_id		= 1,	Calculation of CH4 emissions from vegetation	
oce_id		= 0,		
chem_opt	98			
vertmix_onoff	1		to allow for vertical mixing of the tracer	
have_bcs_chem	.true.			
chem_in_opt	0			
emiss_inpt_opt	0			
chem_conv_tr	1		to allow for subgrid convective tracer transport	

Case Study: Simulated CH₄

2011-08-03_12:00:00

16

e

Comparison of simulated CH₄ with observed in MLW

CH₄ observed at NUIST and MLW

CH₄ concentration in NUIST is lower than that at MLW.

The diurnal pattern of CH_4 is not as obvious as CO_2 .

Summary and future work

- Able to reproduce a case for WRF/GHG simulation on CH₄ using the available IC/BC and emission input files
- Will revisit all input parameters used in Kaplan to find a best scenario for application in Yangtze River Delta region (from a box model to a three dimensional model, WRF/GHG)
- Will learn how to generate emission, initial and boundary conditions of CH₄ and other chemical species for a new case.

Thank You!

