

A discussion on the current status of CH₄ regional numerical models

Reporter: Liu Cheng 2013-04-12

Background

Observational studies of CH₄

> Modeling studies of CH₄

> My work

- CH₄ is the 2nd most important anthropogenic greenhouse gas after CO₂. And the global warming potential of CH₄ is 25 times that of CO₂. Lifetime for methane is 12 years (*IPCC, 2007*).
- The global mixing ratios of CH₄ in the atmosphere have been increasing more than doubled since the pre-industrial period, rising from around 750 ppb in 1800 (*Simpson et al., 2002; Dlugokencky et al., 2003*) to the current level of around 1825 ppb (*WMO, 2011*).
- Based on data in EPA's Global Anthropogenic Emissions of Non-CO₂ Greenhouse Gases report, in 2005, China's estimated anthropogenic methane emissions ranked 1st in the world. (*http://www.globalmethane.org/partners/china.aspx*)

Methane sources

Methane oxidation mechanism in troposphere

The mechanism for oxidation of CH₄ involves many steps and very complicate.

 $CH_4 + OH \rightarrow CH_3 + H_2O$ $CH_3 + O_2 + M \rightarrow CH_3O_2 + M$

 $\begin{array}{c} CH_{3}O_{2} + HO_{2} \rightarrow \overbrace{CH_{3}OOH} + O_{2} \\ CH_{3}O_{2} + NO \rightarrow CH_{3}O + NO_{2} \end{array}$

 $CH_{3}OOH + OH \rightarrow CH_{2}O + OH + H_{2}O$ $CH_{3}OOH + OH \rightarrow CH_{3}O_{2} + H_{2}O$ $CH_{3}OOH + h\nu \rightarrow CH_{3}O + OH$

 $CH_3O + O_2 \rightarrow CH_2O + HO_2$

 $\begin{array}{ccc} CH_2O+OH\rightarrow CHO+H_2O\\ \\ CH_2O+h\nu & \stackrel{O_2}{\rightarrow} & CHO+HO_2\\ \\ CH_2O+h\nu\rightarrow CO+H_2 \end{array}$

$$CHO + O_2 \rightarrow O + HO_2$$

In this overall reaction sequence the C(-IV) atom in CH_4 (the lowest oxidation state for carbon) is successively oxidized to C(-II) in CH3OOH, C(0) in CH_2O , C(+II) in CO, and C(+IV) in CO₂ (highest oxidation state for carbon).

Observational studies of CH₄

Surface stations.

- Airborne measurement.
- Satellite measurement.
 - □ Mid-IR(IASI,TES,AIRS)
 - □ Near-IR(GOSAT,SCIAMACHY)

ullet Ground-based ullet Aircraft ullet Ship + GHG comparison sites

Fig.1 The GAW global network for carbon dioxide. There is a similar network for methane.

> Yale-NUIST Center for AE: CH_4 measurements at Lake Taihu (MLW) and NUIST Campus (using PICARRO) since 2012.

Fig.3 CH₄ Retrievals from GOSAT (*Hartmut Boesch et al 2010*)

What causes the variability?

What pattern does CH_4 look like over the Yangtze River Delta region? V_2

Modeling studies of CH₄

• Global models for CH₄

TM5: Global chemistry- transport model 5

- **GEOS-Chem**: Goddard Earth Observing System-Chemistry transport model
- MOZART: Model for Ozone And Related chemical Tracers
- These global models include many chemistry mechanism, but it simulates CH₄ with relatively simple chemistry. In WRF-GHG, CH₄ transported online in a passive way (i.e. without any chemical reaction).
- Global models have coarse resolution compared to regional models, That can't reflect the sub grid meteorological characteristics. A model intercomparison study over Europe suggested, that the fine-scale features are better resolved at the increased horizontal resolutions (*Geels et al., 2007*).

Model	Meteorol ogy	Horizontal resolution (°)	Vertica 1 layers	Anthro. emissio ns	Biomass burning	wetlands
TM5	ECMWF ERA interim	$ \begin{array}{c} 6 \times 4 \\ (1 \times 1) \end{array} $	25 (60)	EDGAR V4.0	GFEDv2	'JK' or 'BW'
GEOS- Chem	GEOS-5 analyzed meteorolo gical data	2×2.5 (can reach 0.5×0.67)	47 (72)	EDGAR V4.0	GFEDv2	Kaplan
MOZART	NCEP	2.8×2.8 (can reach 0.7×0.7)	28			

Table.1 Comparison between three global model for CH_4

Data from P.Bergamaschi, et al, 2005, 2007, 2010; L.Emmons, et al, 2010; Pickett-Heaps et al. (2011).

- Bergamaschi et al.(2005) used TM5 model to estimate national level emissions for Europe. They found that emissions reported by some nations to the UN Framework Convention on Climate Change (UNFCCC) were underestimated by 50–90% compared with the model inversion.
- Bergamsachi et al. (2010) used inversion modeling method, and found that anthropogenic emissions of CH₄ from northwest Europe were 40% greater than the values reported to the UNFCCC during the period 2001–2006. This is a significant discrepancy and emphasizes the need for verification of emissions.
- *C. A. Pickett-Heaps et al.(2011)* used the GEOS-Chem model quantify the HBL(Canada) methane emissions found that the model only reproduces well the observations in summer and estimate methane emissions is several-fold higher than previous estimates.

G.C. Oct 2006 CH₄ (surface to tropopause) 1900 1850 1800 1750 -1000 -1000 0 100Longitude

Fig.4 (a) TES Tropospheric CH₄ estimates. The TES estimates have been reduced by 26.3 ppb.
(b) Corresponding GEOS-Chem CH₄ estimates, adjusted with the TES instrument operator.
(c) Difference between TES and GEOS-Chem

J. Worden, et al, 2012

◆ Regional model: WRF-GHG for CH₄

Online calculated fluxes

CH₄ fluxes from wetland: Kaplan inventory

> Kaplan wetland inventory is based on a diagnostic approach to determine CH_4 emissions from wetlands as a percentage of the heterotrophic respiration. In addition, an external carbon pool (from LPJ model [Sitch et al.,2003]) and a wetland map are necessary input fields.

$$k_r = \frac{\frac{1}{\tau_0} \cdot g(T) \cdot f_{SM}}{12 \cdot 24 \cdot 30}$$
$$f_{SM} = 0.25 + 0.75 \frac{sm}{sm_{sat}}$$
$$g(T) = \exp\left(308.56 \cdot \left(\frac{1}{56.02} - \frac{1}{T + 46.01}\right)\right)$$

 K_r is carbon decomposition rate; τ_0 is a factor accounting for the turnover time of the fast carbon pool; f_{SM} is soil moisture factor; sm is the mean value of the first two layers of the WRF model; sm_{sat} is the saturation value of the soil moisture depending on the soil type; g(T) is temperature dependence.

- Termite CH₄ fluxes: use the termite database of *Sanderson(1996)* based on WRF-Chem vegetation types.
- Soil uptake CH₄ fluxes: the soil uptake model developed by *Ridgwell et al(1999)*. Meteorological drivers including soil moisture, precipitation and potential evaporation from WRF-Chem.
- CH₄ flux from vegetation: in WRF-GHG a CH₄ vegetation source has been implemented for hypothesis testing. Using the values of GEE and RESP from VPRM model to calculate emissions.

External fluxes data sets

- Biomass burning emissions for CH₄: calculated as daily emissions based on satellite fire spots by a WRF-Chem preprocessor (*Prep_chem_sources*) developed by Karla Longo and Saulo Freitas.
- Anthropogenic emissions for CH₄: Emission Database for Global Atmospheric Research (EDGARv4) and data from the Reanalysis of the TROpospheric chemical composition (RETRO).
- CH₄ fluxes from wetlands-Walter model: It is a processbased model to calculate CH₄ emissions from wetlands. *more details please see Walter et al.*, 1996, 2000, 2001.

Fig.5 Comparison of observed CH₄ mixing ratios (a1,b1) to the WRF simulated CH_4 concentrations (a2,b2) in vertical cross-sections along the flight path of the airplane for two flights in the Amazon region during the BARCA project. The grey lines denotes the vertical "path" of the airplane flown, where the mixing ratios have been measured. The observations are interpolated in the same way as the WRF-GHG results which had been extracted along the flight path of the airplane. CH₄ concentration is indicated by the color scale.

Yale

Beck, V ., et al (2012)

- To set up the WRF/GHG simulations over the Yangtze River Delta region.
- To investigate the impact of land-use and land-cover change, especially wetland change on atmospheric CH₄ concentrations over the YRD region over the past decades.
- To examine the impact of anthropogenic emission changes on CH_4 .

- Learning WRF first, then WRF-Chem, last WRF-GHG, through class and user's guide. Can run some simple cases.
- ➢ To check the CH₄ data we need (from Carbon Tracker, EDGAR) and analysis the data we measure from PICARRO.
- Learn to draw graph by NCL. (*http://www.ncl.ucar.edu/Applications/*)
- \succ Continue literature reading about CH₄ modeling.

Thank You!

