

Jie Liang

Department of Earth System Science, Tsinghua University

Mangroves

Alongi (2008)

Unique physiological structure for adapting to special habitats!

Special physiological structure with unusual water relations!

Stable Isotopes and Plant Carbon-water Relations

1993, Pages 497-510

31 – Hydrogen Isotopic Fractionation by Plant Roots during Water Uptake in Coastal Wetland Plants

Isotopic enrichment of Leaf water ($\triangle^{18}O = ^{18}O$ leaf water - ^{18}O xylem water

CSIRO PUBLISHING

Functional Plant Biology, 2014, 41, 648-658 http://dx.doi.org/10.1071/FP13235

> Stomatal pore size and density in mangrove leaves and artificial leaves: effects on leaf water isotopic enrichment during transpiration

14 ∆180 or ∆2H Small pore Large pore low density high density

Isotopic enrichment of Leaf water ($\triangle^{18}O=^{18}O_{leaf water}-^{18}O_{xylem water}$)

	New Phytologist	Research
--	--------------------	----------

Effects of stomatal density and leaf water content on the ¹⁸O enrichment of leaf water

Leticia Larcher¹, Ikuko Hara-Nishimura² and Leonel Sternberg³

STOMAGEN Transgenic				
lines	Transpiration	Δ_{L}	Δ_{L}/Δ_{e}	ь
Low stomatal density (ST-RNAi)	2.32 ± 0.06c	6.2 ± 1.5a	0.45 ± 0.11a	1.97 ± 0.71a
Wild-type (CS60000)	$3.00\pm0.02b$	6.7 ± 0.7a	$0.51 \pm 0.05a$	$1.55 \pm 0.30a$
High stomatal density (ST-OX)	$3.50 \pm 0.11a$	6.5 ± 0.7a	$0.55 \pm 0.06a$	1.38 ± 0.30a

Cuntz et al. (2009): \triangle_L is not influenced by habitats

ls leaf isotopic enrichment in mangroves different from freshwater plants?

Is the difference common presence?

Is the difference related to leaf traits?

Isotopic enrichment of Leaf water ($\triangle^{18}O = {}^{18}O_{leaf water} - {}^{18}O_{xylem water}$)

4 times for field campaign5 sites in south of China15 mangrove species(total 28)16 land species

Isotopic enrichment of Leaf water ($\triangle^{18}O = {}^{18}O_{leaf water} - {}^{18}O_{xylem water}$)

Water isotopic discrimination of mangrove leaves are very different from freshwater plants!

(Liang et al. 2017)

E.a.

C.t.

L.r.

B.g.

S.h.

Fewer stomata for mangroves

R.s.

A.m.

B.s.

E.a.

C.t.

K.o.

L.r.

A.c.

Stomata

Fewer and lager stomata for mangroves

Aegiceras corniculatum

Kandelia obovata

Melaleuca Viridiflora

Streblus asper

Stomata

Stomata

Succulence

Higher water content

Succulence

Theory

Bulk leaf water
$$\frac{\Delta_{Ls}}{\Delta_{es}} = \frac{1 - e^{-p}}{p}$$
 (1)

$$\Delta_{es} = \varepsilon^+ + \varepsilon_k + (\Delta_v - \varepsilon_k)h_L$$
 (2)

Theory-sensitivity analysis

3.5

3.0

4.0

4.5

3.5

3.5

3.0

2.0 2.5 3.0 log (Leaf water per area mol m⁻²)

6.5

.5 5.0 5.5 6.0 log (Stomatal density mm⁻²)

Theory-Correlation analysis

 $E=gw_i(1-h_L)$

Table 2. Correlation coefficients of factors related to both leaf anatomical traits and leaf water enrichment

Item	LWC	LMA	LS	SL	E	h_L	w_i	T	g	Δ_L/Δ_e	P	L
Δ_L	-0.64	-0.59	0.65	-0.55	0.63	-0.07	-0.09	-0.09	0.60	0.89	-0.87	-0.79
LWC		0.68	-0.67	0.66	-0.63	-0.09	-0.11	-0.10	-0.45	-0.47	0.53	0.63
LMA			-0.64	0.68	-0.62	-0.25	-0.07	-0.07	-0.47	-0.53	0.60	0.69
LS				-0.69	0.60	0.15	0.22	0.23	0.53	0.52	-0.55	-0.63
SL					-0.51	-0.03	-0.26	-0.25	-0.37	-0.37	0.45	0.54
\boldsymbol{E}						0.19	0.11	0.11	0.86	0.65	-0.65	-0.79
h_L							-0.09	-0.04	0.31	0.21	-0.13	-0.17
w_i								0.99	-0.26	-0.17	0.23	0.08
T									-0.26	-0.16	0.23	0.07
g										0.71	-0.68	-0.73
$\Delta_L\!/\!\Delta_e$											-0.93	-0.84
\boldsymbol{P}												0.93

leaf water content per area (*LWC*), leaf mass (dry) per area (*LMA*), stomatal density (*LS*), transpiration (*E*), relative humidity (h_L), leaf temperature (*T*), stomatal conductance (*g*), the mole fraction of (light) water vapor in the intercellular (w_i), the ratio of the isotope enrichment of bulk leaf water to that of the evaporative water (Δ_L/Δ_e), *Péclet* number (*P*), effective mixing path length (*L*) with species-specific leaf water isotopic enrichment (Δ_L). Bold numbers indicated that the correlation coefficients reached the significance level at p<0.05.

Conclusions 1

Schematic diagram of underlying mechanism lowering leaf water isotopic enrichment of mangroves than adjacent non-mangrove plants. The values beside the paths were the standardized ($0^{\sim}1$) path coefficients, which were only shown for the significant effects. (Note that logarithm of all variables was used).

- 1.Our research built the relationship between leaf traits and L which is hardly measurable
- 2.Our research imply models involving leaf water enrichment models should cautiously be used in the plants with special leaf traits in other water-limited ecosystem.

 $+A\Delta_{\Lambda}+F_{an}(\delta_{an}-\delta_{o})$

Background atmosphere $(\delta^{18}O \approx -22\%)$ Steady state Non-steady state Transpired water - midday Transpired water - morning $(\delta^{18}O \approx -9\%)$ $(\delta^{18}O \approx -20\%)$ Transpired water - late afternoon $(\delta^{18}O \approx -10\%)$ Leaf water δ^{18} O \approx 15 ‰ Precipitation Xylem water Soil evaporation $(\delta^{18}O \approx -9\%)$ $(\delta^{18}O \approx -9\%)$ $(\delta^{18}O \approx -35\%)$ Soil water $(\delta^{18}O \approx -9\%)$ 25

Partitioning ET

LETTER

doi:10.1038/nature11983

Terrestrial water fluxes dominated by transpiration

Scott Jasechko¹, Zachary D. Sharp¹, John J. Gibson^{2,3}, S. Jean Birks^{2,4}, Yi Yi^{2,3} & Peter J. Fawcett¹

Jasechko, et al.,2013

Is the T/ET in mangrove ecosystem lower?

LICOR-PCARRO measurement system(LPMS)

We monitored separately (every 10 mins) the isotope composition of

- 1. water vapor above canopy as reference air
- 2. licor6400 exhaust
- 3. water vapor below canopy

LPMS stability

δ_T caculation

Combining Licor _picarro

Theory

Mass conservation

$$sE = u_o w_o - u_e w_e \quad (1)$$

Flux conservation

$$u_o = u_e + sE \quad (2)$$

Heavier isotope conservation

$$\delta_T s E = \delta_P u_o w_o - \delta_A u_e w_e \tag{3}$$

$$\delta_T = \frac{\delta_P w_o - \delta_A w_e + (\delta_A - \delta_p) w_o w_e}{w_o - w_e} \tag{4}$$

δ_T diurnal variation

 $1.\delta^{18}O_T$ presented a bimodal pattern

2. caused by temporary stomatal closure

Method1: CG model

Assumption: Mixing uniform leaf water

$$\delta_T = \frac{\alpha^+ \delta_B - h_L \delta_V - \varepsilon^+ - (1 - h_L) \varepsilon_k}{(1 - h_L)(1 + \varepsilon_k / 1000)}$$
 (6)

Method2: CG_P model (including peclect effect)

Assumption: leaf water is overwhelmed by evaporation site and source water

$$\delta_T = \frac{\alpha^+ \delta_e - h_L \delta_V - \varepsilon^+ - (1 - h_L) \varepsilon_k}{(1 - h_L)(1 + \varepsilon_k / 1000)} \quad (14)$$

$$\frac{\Delta_L}{\Delta_e} = \frac{1 - e^{-p}}{p} \quad (15)$$

$$P = \frac{EL}{DC} \quad (16)$$

$$L=e^{(-0.7612*E+7.0522)}$$
(17)

Method3: FC model

Assumption: leaf water excluding main vein

Leaf lamina water content (W molm⁻²) balance $\frac{d(W)}{dt} = J - T_r$ (11)

Heavier isotope conservation

$$\frac{d(R_L W)}{dt} = R_X J - R_T T_r \tag{12}$$

$$\delta_T = \delta_X - \frac{1}{T_r} * \frac{d(W * \Delta_L)}{dt}$$
 (13)

Method 4: steady-state assumption

Modelling Results

What factors drive δ_{τ} variation?

its variation mainly was drove by stomatal conductance, leaf temperature and air humidity

Conclusions 2

- 1. The $\delta^{18}O_T$ presented a bimodal pattern caused by stomatal closure during 2:00~4:00 PM, and its variation mainly was drove by stomatal conductance and leaf temperature;
- 2. The $\delta^{18}O_T$ deviated from isotopic steady state throughout most of the days, when E is not high enough.
- 3. Modified CG model including peclet effect and FC model are both suitable to simulate $\delta^{18}O_T$ of mangrove leaves.

