Estimating urban net CO₂ flux using a box model

Yale-NUIST Center on Atmospheric Environment Yale Univ. and Nanjing Univ. of Infor. Sci. & Tech.

Gao Yunqiu 2014-11-14

Background

- ➤ Urban areas are important sources of GHGs. Globally, much more CO₂ is emitted from anthropogenic sources in urban area with comparison to suburbs and the natural landscapes.
- ➤ In this study, we measured CO₂ in the city of Nanjing, China. The data were used with a box model to determine the spatial and temporal variation of the urban surface CO₂ source strength.

Methods and materials

■ We made measurements on the roof of 5 tall buildings (100-120 m tall) located in the north, east, south, west and middle of the Nanjing City. 15km distance from north to south, and 8.8 km distance form west to west.

Tab.1 Summary of the dates of the experiments

	Time	Status
Winter	20140112-20140118	conducted
April	20140420-20140426	conducted
Summer	20140717 00:00-20140725 17:00	conducted
Autumn	20141007 17:00-20141016 12:00	conducted
Winter	201501**	plan to conduct

linear interpolation

$$C(t) = \frac{C_{st1} - 0}{C_{st3} - C_{st2}} C_{obs}(t) - \frac{C_{st1} - 0}{C_{st3} - C_{st2}} C_{st2}$$

$$C = C(t_1) + \frac{C(t_2) - C(t_1)}{t_2 - t_1} (t - t_1)$$

- t: observed time
- $\mathbf{t_1}$, $\mathbf{t_2}$: calibration time, t1<t<2
- C:calibrated concentration
- C_{st1}: value of standard gas of CO₂
- \mathbf{C}_{st2} , \mathbf{C}_{st3} : value of 840A measured standard \mathbf{N}_2 , \mathbf{CO}_2

Results

Fig.1 Diurnal pattern of CO₂ concentration

Box Model

 C_m , C_a and C_t represent urban, suburban and free atmospheric CO_2 concentration.

Main equation

$$F_{NEE} = \rho h \frac{\partial C_m}{\partial t} + \rho h \frac{u}{L} (C_{down} - C_{up}) + \rho \frac{\partial h}{\partial t} (C_t - C_m)$$

time variation advective term

vertical turbulency

$$\frac{dh}{dt} = \frac{Hv}{\rho c_n h \gamma_n}$$
 (McNaughton, 1989)

$$Hv = H + 0.07\lambda E$$

 γ_v Gradient of virtual potential temperature at height h+, immediately above the PBL.

Fig.2 Calculation of three components of NEE in different seasons

Fig.4 Diurnal variation of calculated NEE in different season

Carbon tracker

- □ CarbonTracker is a CO₂ measurement and modeling system developed by NOAA to keep track of sources (emissions to the atmosphere) and sinks (removal from the atmosphere) of carbon dioxide around the world.
- □ CarbonTracker uses atmospheric CO₂ observations from a host of collaborators and simulated atmospheric transport to estimate these surface fluxes of CO₂.
- □ The current release of CarbonTracker, CT2013, provides global estimates of surface-atmosphere fluxes of CO₂ from January 2000 through December 2012.
- http://www.esrl.noaa.gov/gmd/ccgg/carbontracker/

Fig.5 The diurnal composite flux derived from Carbon Tracker (3-hourly data) for the grid point that corresponds to Nanjing (grids of 118°E, 31.5°N and 118°E, 32.5°N, then make an average) for the five most recent years (2008-2012). The flux has four components: fossil flux, bio flux, fire flux and ocean flux and add them up to get the composite flux.

The sensitivity test

Fig.6 Time series of PBL heights

Fig.7 Diurnal pattern of NEE (summer)

Fig.8 Diurnal pattern of NEE (summer)

Summary and on-going work

- Yang Dong's paper indicated CO₂ emission for Nanjing in 2009 is 66.49x10⁹Kg (*Shen, 2014*). Convert it to flux is about 0.32 mg m⁻²s⁻¹. And my result is 0.77 mg m⁻²s⁻¹.
- My results provide evidence for box model where, on average, advection was the most important CO₂ reduction process in Nanjing. The same as Strong et al (2011).
- My results showed the same change trend with Carbon Tracker's, but the values were much higher.

■ PBL height is an important parameter in the equation. I need find some more ways to calculate it.

■ The data need to be dug deeper, like data preprocessing, pick out typical case and so on.

Thank you