气象学报

中国南方夏季低频雨型特征及其年代际变化研究

张玉洁^{1,2} 刘寿东¹ 任宏利² 李维京² 陈丽娟² 张培群² 左金清² ZHANG Yuije^{1,2} LIU Shoudong¹ REN Hongli² LI Weijing² CHEN Lijuan² ZHANG Peiqun² ZUO Jinqing²

- 1. 南京信息工程大学气象灾害预报预警与评估协同创新中心,南京,210044
- 2. 国家气候中心,北京,100081
- 1. Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. National Climate Center, Beijing 100081, China

2013-11-13 收稿, 2014-06-27 改回.

张玉洁,刘寿东,任宏利,李维京,陈丽娟,张培群,左金清.2014.中国南方夏季低频雨型特征及其年代际变化研究.气象学报, 72(6):1205-1217

Zhang Yujie, Liu Shoudong, Ren Hongli, Li Weijing, Chen Lijuan, Zhang Peiqun, Zuo Jinqing. 2014. Characteristics and the inter-decadal variation of the low-frequency rainfall regimes over southern China in summer. *Acta Meteorologica Sinica*, 72(6):1205-1217

Abstract Using the daily precipitation dataset covering southern China and the NCEP/NCAR daily reanalysis data for the period 1961 – 2011, the intra-seasonal and inter-decadal variations of the low-frequency rainfall regimes over southern China in summer are investigated. Five rainfall regimes (RRs) generated from the 10 day low-pass filtered data are identified by applying the empirical orthogonal function and cluster analysis method. The results show that RRs match well with the large-scale circulation and significant difference exists in characteristics of water vapor transport. It is more important that the new RRs can describe intra-seasonal dynamic characteristics of large-scale rainfall anomalies, which is the most significant difference between the new RRs and the conventional season average rainfall patterns. Moreover, a significant inter-decadal variation is observed in statistical characters in the last five decades: peak values of the regimes appear in succession from 1980s to 1990s; in the 21 century, the statistics of the rainless regime shows a significant increasing trend, while most low-frequency regimes are less seen . It indicates that southern China is entering a period of the decrease of intra-seasonal precipitation.

Key words Low-frequency rainfall regime, Water vapor transport, Intra-seasonal variations, Inter-decadal variations

摘 要为了揭示南方低频降水的季节内及年代际变化规律,利用 1961—2011 年夏季中国南方逐日降水资料和大气环流再 分析资料,运用经验正交函数分解(EOF)与聚类分析相结合方法,将南方地区 10 d 以上的低频尺度降水划分为 5 个异常雨 型。分析表明,各雨型具有较好的持续性,与同期的环流场有很好的对应关系,彼此间水汽异常输送特征有明显差别。通过 对雨型的统计特征进行分析,指出不同于以往的季节平均雨型,低频雨型可在季节内交替出现,反映了大尺度异常降水的低 频演变特征。进一步研究发现,近 50 年来各低频雨型的多项统计特征存在显著的年代际变化:20 世纪 80—90 年代各多雨型 均相继出现峰值,进入 21 世纪偏旱型的各项统计特征存在明显上升趋势,而大部分低频多雨型出现次数减少,这可能预示着 中国南方地区正在进入一个季节内尺度降水减少的阶段。 关键词 低频雨型,水汽输送,季节内变化,年代际变化

天雄司 瓜须雨至,小八捆达,学节内支化,平八两支化 中图法分类号 P462.4

作者简介:张玉洁,主要从事短期气候预测研究。E-mail:zhangyj104@163.com 通讯作者:任宏利,主要从事短期气候预测和气候动力学研究。E-mail:renhl@cma.gov.cn

^{*} 资助课题:国家重点基础研究发展计划(2013CB430203)、公益行业(气象)科研专项(GYHY201406022)、教育部长江学者和创新团队发展计划项目(PCSIRT)。

1206

1 引 言

近 50 年来,在全球变暖背景下,中国南方降水 的时空分布发生了显著的改变,对水资源、生态系统 和社会经济等产生深刻影响。南方地区社会经济发 展水平较高、人口密度大。在全球变暖背景下,南方 干旱和洪涝灾害发生频次都存在增加的趋势,其经 济损失和社会影响尤为凸出。因此,研究中国南方 地区降水异常特征及其规律的变化具有重要意义, 为进一步研究南方气候异常成因和预测奠定一定基 础。

对中国夏季降水异常分布的空间模态(雨型)特 征已有大量研究工作(李维京等,1990,1992;Tian, et al, 1992; 王绍武等, 1998; 孙林海等, 2005; 许力 等,2005;Chen, et al, 2009;黄琰等, 2011)。以往这 些雨型(或模态)大多由月或季节平均的异常降水量 分析得到,主要反映的是夏季降水分布的年际变化, 属于季节整体的静态描述,未涉及异常降水分布在 季节内的连续演变特征。与其相对应的降水异常同 期的环流形势与水汽输送也主要集中于以季节为整 体的气候学、年际变化、年际异常特征以及重要个例 分析(Tao, et al, 1987; Zhou, et al, 2005; He, et al, 2007;赵瑞霞等,2008;陈际龙等,2008;周晓霞等, 2008),对于季节内低频降水雨型与大气环流形势, 以及水汽输送问题关注较少。实际上,月时间尺度 或者更短的低频过程在持续性气候异常过程中起重 要作用(Leith, 1973; Dole, 1986), 夏季降水往往包 含若干个季节内的大尺度低频降水过程,表现出明 显的低频变化,与之密切联系的大气环流形势与水 汽输送也会表现出季节内低频特征(任宏利等, 2004a,2006;左金清等,2009)。任宏利等(2005b)通 过在相空间中聚类分析方法识别出中国夏季的7种 低频雨型,这些低频雨型在物理空间中的分布一般 与夏季风雨带有很好的对应关系,具有持续和转换 特性,分别对应于低频降水所表现的连续传播或者 跃变特征,能够很好地刻画大尺度低频降水过程的 季节内时空变化特征,不仅为延伸期低频过程预报, 也可为月、季节气候预测提供借鉴。

大气季节内振荡(Madden, et al, 1971)自发现 以来已经成为大气科学研究的热点问题,受到众多 气象学家的普遍重视(Krishnamurti, 1985;李崇银 等, 1990, 1991, 2003;李崇银, 1990, 1995, 2004;徐

国强等,2003)。其对持续性异常环流的形成和维持 具有十分重要的作用,因而很多低频降水事件都跟 大气低频振荡有关,继 Yasunari(1979)指出印度夏 季降水与热带低频振荡有关之后, Mo 等(1998)、 Whitaker 等(2001)、Paegle 等(2000)、Hendon 等 (1990)、Wheeler 等(2004)的研究也表明,北美夏、 冬季降水事件,南美夏季降水,澳大利亚季风及极端 降水也都与季节内振荡存在联系。同样,中国南方 各区域(如长江中下游:何金海等(1988)、Chen (2001)、张秀丽等(2002)、王遵娅等(2008b);东南 地区:朱乾根等(2000)、Zhang 等(2009);华南:史学 丽等(2000)、信飞等(2007))的夏季降水都与大气低 频振荡有关。可见,大气低频振荡对中国南方降水 的阶段性、持续性降水事件的发生具有重要作用(李 崇银等,2003;陈隆勋等,2006),在此影响下,中国南 方夏季降水也存在显著的季节内低频变化,具有明 显的空间传播特征(Lau, et al, 1988; 缪锦海等, 1991;杨广基,1992;梁萍等,2012);同时低频降水也 是夏季降水的重要组成部分(李崇银,1993;Chen, et al,2001; Qian, at al,2002;任宏利等,2004b,2005a, 2005b)。然而,也应该看到以往的研究仅仅是针对 个例年或不同区域的低频降水事件,如何客观系统 地识别出存在地域差异的季节内低频雨型,并考察 其在全球变暖背景下的年代际变化特征,从而形成 对南方低频降水时空特征及其规律和变化的系统认 识,是一个非常重要的科学问题,也为广受关注的季 节内预报问题提供合适的预报对象参考。文中采用 构造相空间-聚类分析方法,系统地分析中国南方地 区低频降水异常所呈现的空间分布特征,进一步深 人分析南方夏季低频降水型的基本特征及其规律的 年代际变化,为深入研究中国南方地区旱涝变化机 理及预测奠定基础。

2 资料

所用资料为中国国家气象信息中心整编的 1951—2011年中国756站逐日降水资料。由于这 些站点的建站时间不同,资料长度不一,且存在很多 缺测,因而在对数据进行分析之前对资料进行了处 理。首先,对单个缺测值进行了插值;然后,将连续 缺测8d或全年缺测日数超过30d的资料算作缺 测。从2011年开始往前检验,对资料连续长度短于 51a的站点剔除,以保证每站的资料都至少包含了 从 1951 年到 2011 年的连续记录。南方区域(32°N 以南、97°E 以东)共选取了 208 个资料质量较高的 站点(图 1)。可以看出所选站点的分布均匀且较为 密集,具有较好的代表性。为了较全面考察南方夏 季汛期雨型的变化特征,取每年 5—9 月 153 d 的逐 日资料,51 a 总计 7803 个样本作为原始数据序列, 并去掉季节循环得到逐日距平值。另外,在进行雨 型分析时,使用了上述数据序列的标准化形式,目的 是消除不同地区降水距平的气候差异。

图 1 南方地区站点分布(已经过质量控制) Fig. 1 Distribution of the stations in southern China (with quality control passed)

文中还使用了同期美国环境预测中心/国家大 气研究中心(NCEP/NCAR)发布的全球再分析日 平均资料,其水平分辨率为2.5°×2.5°,包括8个 标准等压面(1000、925、850、700、600、500、400和 300 hPa)上的比湿和风场,以及500 hPa 位势高度 场、200 hPa 纬向风场和表面气压场。

3 南方低频雨型的划分

可将逐日降水观测场近似表示为相空间中的状态点,那么,降水的长期演变在相空间中就会形成若干个主要的状态密集点,它们代表了出现概率较高的大尺度低频雨型(任宏利等,2004b,2005a,2005b)。由于降水场包括几百甚至上千个空间点,为构建相空间就必须减少自由度。理论和数值试验表明,经验正交函数分解是构建相空间的有效工具(张邦林等,1991,1992)。采用任宏利等(2005a,2005b)的方法,先利用经验正交函数相空间来缩减自由度,通过降低相空间的维数达到提取主要信息的目的。接着通过 K 均值聚类方法,利用相空间中的距离或相似关系,直接将观测样本对应的状态点

进行分类,最后将每个分类对应的样本进行合成,得 到雨型的物理空间分布。具体步骤为:

对每年 5 月 1 日到 9 月 30 日资料,去掉每个 站点上的季节循环,首尾衔接得到 51 a 共计 7803 个样本的异常降水数据。为突出大尺度降水的低频 信号,对其进行 10 d 低通滤波,得到的数据样本记 为 LF10。在滤波过程中,先对每年 3—11 月的资 料进行滤波,再截取 5—9 月,以剔除边界的影响, 并对降水资料进行了标准化处理。

在使用聚类方法进行分类前,希望引进方差较 大模态起主要作用的样本点,去掉方差较小模态占 优势的样本,因为前者更能反映大尺度变化信息。 为此,考察每个样本点其前 m 个主分量(PC)的均方 差是否大于其余主分量的均方差,选取比值大于 1 的样本(任宏利等,2004b,2005a,2005b)。LF10 数 据的前 12 个经验正交函数分解方差贡献约达到 55%,将 m 取为12,可在总体中选取 6062 个样本。 以占总方差约 45%为标准,选取前 10 个经验正交 函数分解支撑的相空间,使用经过筛选的 6062 个 样本点进行分类。

接着,用 K 均值聚类方法(Mo, et al, 1988)进 行分类。该算法的基本思想是取定 K 类,并选取 K 个初始聚类中心,按最小距离原则将样本数据分配 到 K 类中的某一类;之后不断地计算类重心,同时 调整样本数据的类别,最终使各样本数据到其判属 类别中心的距离平方之和最小。遵循组内差异尽量 小,组间差异尽量大的原则,确保所分的类数是稳定 且数目较小的,经过多次试验及方差检验,最终将其 分为5类。将低频雨型所对应的逐日降水资料进行 合成,即可得到该雨型在物理空间的分布(图 2),分 别为:

第1类:东南型(R1)。东南地区为量级较高的 显著低频降水正中心,西南地区为低量级的显著负 异常,整体呈现东西反相的空间分布特征。

第2类:偏旱型(R2)。整个南方地区呈现一致的低频振荡负位相,呈现少雨的空间分布。

第3类:长江型(R3)。长江中下游地区为低频 降水的高值中心,华南为主的其他地区为量级较小 的负异常,整体呈现南北反相的空间分布。

第4类:江南型(R4)。整个江南地区为显著的 降水正中心,强度较强。整体近似呈现为南方一致 多雨的空间分布。 第5类:华南型(R5)。整个华南地区为显著的 低频振荡正位相,即华南地区为低频降水的高值区, 南方其他地区呈现量级较小的负位相,整体呈现南 北反相的空间分布。

在相空间中对状态点进行聚类分析,将相似程 度高的样本归为一类,实质上表现了逐日低频降水 分布的整体相似情况。可以看到,5个低频雨型基 本涵盖了南方各区域大尺度低频降水模态。每个雨

型都存在一个支配性的显著异常中心,从而又凸出 了降水异常的局部特征。因此,当低频雨型持续存 在、保持整体特征不变的情况下,区域性异常中心 有较小变化时,表现出与以往研究(Lau, et al, 1988;缪锦海等,1991;杨广基,1992;Qian, et al, 2002)类似的低频降水的连续传播特征;雨型转换 时,即异常中心转移到其他区域,整体特征随之显著 改变,低频降水的空间模态表现为跃变特征。

图 2 中国南方低频雨型合成

(a. R1东南型,b. R2 偏旱型,c. R3长江型,d. R4 江南型,
e. R5 华南型;实线内为达到 u 检验 99%信度水平的区域)
Fig. 2 Composite maps of the low-frequency rainfall regimes (a. Southeast regime, b. Rainless regime,
c. Yangtze River regime, d. South of Yangtze River regime
e. South China regime; the areas with the anomalies
significance at the 99% level are contoured by the solid line)

4 低频雨型的气候统计特征

4.1 低频雨型分类统计特征

统计了各低频雨型的相关信息(表 1),目的是 了解各雨型的气候平均特征,进一步加深对南方低 频降水型的认识。可以看到,偏旱型(R2)所占样本 个数和事件(该雨型逐日连续发生且无间断,从该雨 型连续发生的第一天起到出现间断的某天止为一次 事件)个数是最多的。如果只将偏旱型与其他某种 多雨型相比,偏旱型的样本个数是其他各多雨型的 2-3倍,事件个数是各多雨型的2倍左右,但总体 来讲,偏旱型样本个数占总样本个数的近4成;由于

其事件持续时间较长,所以事件个数占总事件个数 的3成左右。与偏旱型相比,南方汛期4种多雨型 总体出现的次数较多目占优势,各多雨型平均每年 发生 4-6 次, 平均持续时间(一个雨型事件经历的 天数) 不到 4 d, 其中东南型平均持续时间最短。如 果考虑雨型间隔时间(从某一雨型事件结束到下一 雨型事件开始),多雨型平均的"雨型-间断"循环周 期是 18-30 d,其中江南型样本个数和事件个数均 为最少,平均间隔时间最长,这可能是因为江南多雨 为一个过渡雨型。各雨型统计均表明持续时间小于 5 d 的事件最多。

表 1 低频雨型的分类信息

Tabel 1	The catalog of the low-frequency rainfall	regimes
事件	给定持续时间(d)的事件个数	平均持续

低频	样本	事件	给定持续时间(d)的事件个数				平均持续	最长持续	平均间	
雨型	个数	个数	(0,5]	(5,10]	(10,15]	(15,20]	(20,∞]	时间(d)	时间 (d)	隔时间(d)
R1	1011	266	326	39	1	0	0	2.8	11	18.6
R2	2325	520	371	116	27	5	1	4.5	21	10.6
R3	924	266	230	34	1	1	0	3.5	18	25.8
R4	713	224	201	20	3	0	0	3.2	15	31.7
R5	1089	315	275	38	2	0	0	3.5	12	21.0

4.2 低频雨型的季节内气候分布

为了考察雨型在季节内的分布特征,对5-9月 每天各雨型发生天数进行了气候统计(图 3)。可以 看到,各雨型发生时间的气候分布存在明显差异,不 同的时段有相应的优势雨型,一定程度上反映出了 降水异常分布的季节内动态演变过程,这对于进一 步认识南方地区季节内大尺度降水异常的时空分布 很有意义。中国夏季风雨带常伴随副热带高压随纬 度的季节性移动(王遵娅等,2004,2008a,2008b),夏 季风的异常往往会直接导致降水的异常分布。

从图 3 可以看到,华南型(R5)、江南型(R4)和 长江型(R3)均在7月中旬之前发生次数较多,累计 发生次数为8次左右,并且存在着时间上依次推进, 这说明雨型的发生倾向与同区域实际季风雨带出现 的气候时间对应。每年3-5月,主要雨带位于华南 沿海地区,并随着天气的转暖缓慢向北移动;6月中 旬或下旬,雨带北移至长江流域,江淮一带进入梅雨 期,这种连续性的阴雨一直会持续到7月上旬末。7 月中旬之后,华南型(R5)、江南型(R4)和长江型 (R3)发生次数较少,累计发生次数在4次左右。此 时,雨带北移至黄河流域和华北,而江淮地区则处于 副热带高压的控制之下,进入伏旱期。然而华南型 在7月中旬发生次数虽然减少,但相比江南型和长 江型,其发生次数并不少,累积发生次数仍有6次左 右。另外,东南型在7月中旬之后发生次数要明显 多干7月中旬之前,这是因为在7月中旬之后,主要 雨带迁移至北方,这时对于全中国降水异常来讲,华 南一般还伴随有一个次降水雨带出现,故这种雨型 在7月中旬后出现次数反而偏多,累积发生次数大 都超过10次。偏旱型在5-9月的分布总体比较平 均,累积发生次数大约为15次,只是在7月中旬和 8月上旬相对比较多,这个时期正是北方的雨季,而

南方却是常发生伏旱的时段,所以,偏旱型(R2)相 比出现的频率较高。在7月中旬之前,华南型、江南 型和长江中下游型发生频数多;而之后,则较多出现 的是东南型和华南型。综上,低频降水在季节内分 布的变化很大。低频雨型在季节内的分布一般很多 时候与季风雨带相对应,这表明低频降水是总降水 中的重要部分。

5 低频雨型的环流型和水汽输送

由于低频雨型所对应的样本包括除高频天气尺 度之外所有时间尺度的信号,具有相比原始数据更 好的持续性,能更好地刻画大尺度异常降水的变化, 并且与大尺度的环流形势对应。研究表明,西太平 洋副热带高压和东亚西风急流对中国东南方夏季降 水具有重要影响(Zhou, et al, 2005);同时,区域降水 的多寡与大尺度环流背景下的水汽输送也有密切的 关系,与中国区域降水相联系的水汽来源明显不同 于正常季风的水汽来源(任宏利等, 2006;左金清等, 2009)。所以,为了考察中国南方各种雨型所处的环 流背景及其水汽输送,对每个雨型对应的200 hPa纬 向风场异常、500 hPa 高度场异常及整层积分水汽 输送异常进行合成。

从东南型对应的环流场(图 4a)可以看到,东亚 和西北太平洋呈多极子分布,存在中国华南地区到 阿拉斯加北部的"+-+-"波列。中亚和东北亚地 区为阻塞形势偏多,中国华北北部以及西北太平洋 为负中心,东南区域位于西太平洋副热带高压西南 侧、高度场负异常中心,这种环流型有利于冷暖气 流在东南地区交汇,其整层积分水汽输送异常(图 5a)进一步说明,此时东南季风水汽输送偏强,西南 季风水汽输送偏弱,异常水汽在东南地区辐合,主要 来源于印度洋经孟加拉湾及西太平洋经南海的水汽 输送异常的贡献以及一支西太平洋的水汽输送异 常,导致东南异常多雨;同时,水汽在西南地区辐散 且向印度半岛方向以及中国东南地区输送,造成了 该区域处于干旱的状态,这也使得中国南方的降水 呈现东多西少的反相分布。

偏旱型对应的环流型有所不同(图 4b),东亚地 区呈经向的"-+-"波列,正异常中心位于中国 中东部地区,两个负中心分别位于贝加尔湖和中国 南海。东亚西风急流中心偏西且偏北,南方地区处 于纬向风增强中心的东南侧,即急流中心的出口位 置,其对应的高空被反气旋控制,在这种有利的高低 空环流配置下,异常水汽在南方地区上空辐散,同时 西太平洋副热带高压偏北,整个南方区域位于高度 场强正异常中心,中国华北、南海以及孟加拉湾上空 则对应着高度场负异常,南方地区水汽输送减弱且 水汽沿着低空气旋的北侧、西侧和南侧向不同方向 输出。即当南方地区水汽(图 5b)向西西伯利亚、青 藏高原以及印度等方向异常输出时会导致整体偏 旱,此时,中国南方呈全区一致的少雨状态。

长江流域的环流异常(图 4c)表现近似为 Huang(1992)分析的江淮多雨所对应的波列结构, 东北亚阻塞出现偏多,低纬度负异常,印度北部--孟加拉湾正异常,西南季风气流减弱,也使得雨带 位置偏南。副热带高压偏南,长江流域处于其南侧 的高度场正异常中心和北侧的高度场负异常中心之 间,使得西太平洋水汽输送沿着西太平洋副热带高 压西南侧的东南气流源源不断地被输送到长江流域 上空,形成强水汽辐合。同时东亚西风急流中心偏 东且偏南,长江流域在急流中心的西南侧,对应着急 流中心的入口,其高空为强纬向风辐散区,低空辐 合、高空辐散,也对应着长江流域上空强烈的气旋, 与 Zhang(2001)研究一致,此时来自副热带高压的 水汽输送增强,印度季风的水汽输送减弱,水汽输送 异常(图 5c)主要来自于热带西太平洋以及台湾以 东的副热带西太平洋,经中国南海及其附近地区输 送,同时,还存在一支经孟加拉湾海由青藏高原往东 并输入江淮区域的水汽输送异常,从而导致了长江 流域多雨的状态;而华南地区上空水汽辐散且向江 淮地区的水汽输送异常也导致了华南地区的局部干 旱,此时南方地区低频降水整体呈现为南多北少的 反相分布。

影响江南多雨的环流异常(图 4d)主要表现为 东亚地区由南向北的"+ - +"波列,中纬度地区 为显著负中心,低纬度海洋上为大片正异常,西太 平洋副热带高压偏南,而东北亚高纬度为正中心, 表明阻塞形势偏多,印度北部一孟加拉湾正异常, 西南季风气流减弱,使雨带明显偏南。江南区域位 于西太平洋副热带高压西北侧以及位势高度距平场 0等值线以南地区,使得来自热带洋面的水汽沿着 西太平洋副热带高压西南侧的东南气流易于输送到 江南区域上空;同时,西西伯利亚到蒙古高原一带为 位势高度正异常区,有利于中高纬度的相对冷水汽 输送沿着反气旋的东南侧输入中国东部。200 hPa 纬向风异常场也说明,江南区域位于纬向风增强中 心的西南侧,处于急流中心的入口位置,说明该区域 上空高层为纬向风辐散区,更有利于低层水汽的输 送及其辐合。江南地区异常多雨主要来源于(图 5d)西太平洋经中国南海、中纬度西风带以及中高纬 度南下的水汽输送异常的贡献。印度夏季风水汽输 送增强导致阿拉伯海、孟加拉湾热带暖湿水汽输送

异常增强,其与中高纬度相对冷水汽输送异常辐合 于江南区域上空,这为该区域的降水提供了有利的 水汽条件,形成了南方地区一致多雨的分布特征。

华南型更多地表现为局地的环流异常(图 4e), 其上空对应着显著的位势高度负异常,东亚西风急 流中心位置偏东且偏南,主要降水区位于纬向风增 强中心的下方,既急流带入口处,气流在高空辐散, 使得低层水汽输送及其辐合更加强烈。与环流形势

图 4 低频雨型环流异常

一致,局地强烈的反气旋导致水汽在华南地区的强 辐合,进而造成华南地区异常多雨(图 5e);同时,江 淮地区向华南区域输出的水汽异常也导致了江淮地 区的局部干旱,对应的低频雨型呈现为南多北少的 反相分布。

综上可以看出,5 类雨型与其同期的环流形势 和水汽输送形成了很好的对应关系,表明了每种雨 型形成的环流背景。

图 5 低频雨型水汽输送异常

(a. R1 东南型, b. R2 偏旱型, c. R3 长江型, d. R4 江南型,
e. R5 华南型; 矢量为整层积分水汽输送异常(单位:kg/(m・s)), 填色区为其水汽通量散度(单位:10⁻⁵kg/(m² • s)))
Fig. 5 Anomalies of water vapor transport
(vector, unit: kg/(m・s)) for the total column and the vapor flux divergence (unit: 10⁻⁵kg/(m² • s))
corresponding to each regime (a. Southeast regime,

 b. Rainless regime, c. Yangtze River regime, d. South of Yangtze River regime, e. South China regime)

6 南方低频雨型特征的年代际变化

6.1 低频雨型统计量的年代际变化

在全球变暖的背景下,降水空间分布随之发生 了年代际的改变(顾薇等,2005;江志红等,2006;张 人禾等,2008;司东等,2010;Wang,2011;丁一汇 等,2013)。为了进一步加深对低频降水异常分布的 年代际变化的认识,统计了5个特征量来描述各雨 型的逐年变化特征(图 6),分别为每年该雨型的发 生天数、强度、事件的发生个数、事件的平均持续时 间、事件的平均强度,其中强度定义为该雨型极值中 心5个代表站点的平均降水量,因此,雨型的强度为 该雨型5个代表性站点每年的平均降水量,而事件 的强度则为该雨型的一次事件极值区 5 个代表站的 平均降水量。

图 6 为各雨型特征的逐年统计,经功率谱分析 (图略),偏旱型存在着 16 a 以上的显著的年代际变 化:20世纪60年代偏旱型的各项统计特征均处于

Tabel 2 Information of the representative stations for the various low-frequency rainfall regimes						
R1 东南型	R2 偏旱型	R3长江型	R4 江南型	R5 华南型		
58665 浙江洪家	57832 贵州三穗	58402 湖北英山	57957 广西桂林	59298 广东惠阳		
58477 浙江定海	58634 江西玉山	57494 湖北武汉	57845 湖南通道	59501 广东汕尾		
58666 浙江大陈岛	57816 贵州贵阳	57399 湖北麻城	57799 江西吉安	59294 广东增城		
58562 浙江鄞县	57776 湖南南岳	57483 湖北天门	57766 湖南南岳	59493 广东深圳		
58667浙江玉环	58715 江西南城	57583 湖北嘉鱼	58715 江西南城	59271 广东广宁		

表 2 低频雨型代表站信息

theast Regime $(a_1 - e_1)$, RZ Ranness Regime $(a_2 - e_2)$, RS rangize River Regime $(a_3 - e_3)$

d. Intensity (unit: 0.1 mm), e. Average intensity (unit: 0.1 mm))

R4 South of Yangtze River Regime $(a_4 - e_4)\,,$ and R5 South China Regime $(a_5 - e_5\,)$

⁽a. Days (unit: d), b. Number of events (unit: times), c. Average duration (unit: d),

较高值,此时中国主雨带在北方;在 20 世纪 60 年代 后期到 70 年代以及 20 世纪 90 年代到 21 世纪初, 偏旱型发生的天数都较少,累计发生天数大都小于 30 d,说明在这两个时段内,各区域多雨型发生的次 数相对较多,这也是与中国雨带相呼应的,20 世纪 70 年代中国雨带呈现为"南北多,中间少"的格局, 而 90 年代则是"南多北少",对于偏旱型事件来说, 80 年代之前偏旱型发生的事件次数较少,但其每次 事件持续的时间较长;而 80 年代之后,事件发生的 次数较多,平均每年增加 10 次左右,同时每次事件 的持续时间却相对较短。大多不到 4 d,到了 21 世 纪后,偏旱型的事件个数、事件持续时间增多,导致 该少雨型发生天数也增多,同时,雨型的强度降低, 每年单站 5—9 月累计降水量平均不到 40 mm,干 旱程度增强。

各多雨型也存在着明显的年代际变化,其多项 统计特征在 20 世纪 80—90 年代均出现不同程度的 峰值:江南型可以看作整体偏涝型,年代际变化也较 为明显,特别是在整个90年代,江南型的发生天数、 事件的持续时间和雨型的强度均处于峰值;分区域 来看,长江型的各项数据统计在80年代均处于较高 水平,其发生天数、事件个数以及雨型的强度均为历 史同期最高值,此时也正是中国雨带由北向南迁移 的时段;东南型统计特征的年代际变化不明显,整体 来看该雨型的发生天数存在上升的趋势,事件强度 的峰值处于 80 年代;华南型的统计特征则大多在 90年代处于峰值,其事件强度和雨型强度在90年 代显著增大,此时中国主要多雨带在长江以南地区。 实际上,已有很多研究证明20世纪80-90年代是 南方降水显著增多时期(顾薇等,2005;张人禾等, 2008;司东等,2010)。本研究从季节内低频降水的 角度出发,再次说明南方地区在20世纪80—90年 代降水量显著增多,原因之一是南方降水的低频事 件增多,且每次事件的持续时间和强度均增大;到了 21世纪,南方各多雨型的统计特征均存在着不同程 度的减小,南方低频降水从发生天数、强度等方面体 现出减小的趋势。综上,各低频雨型均存在着显著 的年代际变化,这和夏季风雨带的年代际迁移(顾薇 等,2005;江志红等,2006;司东等,2010;Wang, 2011;丁一汇等,2013)有着密切关系。进入21世纪 后,偏旱型各项统计特征明显上升及多雨型各项统 计特征的相反变化均说明中国雨带有北移的趋势 (顾薇等,2005;司东等,2010)。

6.2 低频雨型季节内分布的年代际变化

在对各类雨型多年平均的季节内分布进行统计的基础上,对雨型逐年、逐月的发生天数进行了统计 (图 7),进一步分析各雨型在季节内出现规律的年 代际变化。

偏旱型在 20 世纪 70 和 90 年代的发生天数均 不同程度地偏少,特别是 90 年代,几乎在整个汛期 发生天数都远小于历史同期,每年每月累积发生次 数小于 4 次,这也再次说明,整个 90 年代,南方地区 多为降水的正异常分布。可以看到,20 世纪 80 年 代偏旱型发生的天数虽没有 90 年代那样显著减少, 但其由初夏较易发生干旱逐步转变为初秋出现的概 率增多,该年代正是雨带由北向南移动到江淮地域 的过渡阶段,之后,雨带移至长江以南地区,使得南 方地区偏旱型发生的天数在整个汛期都显著减小, 进入 21 世纪后,偏旱型的发生次数在 7、8、9 月均呈 现偏多趋势,累计发生次数大概为 12 次,说明中国 南方从盛夏到秋初干旱发生的频率增大。

各多雨型逐月发生天数也存在着显著的年代际 变化,与季风雨带的年代际迁移有着密切的联系。 在 20 世纪 60—70 年代,中国多雨带在北方,南方夏 季降水偏少,这时各季节内低频多雨型的发生天数 均处于较少阶段;70 年代末到 80 年代,中国夏季雨 带南移,多雨带为黄淮、江淮地区,此时,长江中下游 整个汛期的低频降水型发生次数都较多,累积发生 次数大都大于 6 次,其他各季节内多雨型的发生天 数也有所增多;到了 90 年代后,夏季雨带继续南移, 季节多雨带为江南地区,此时,长江中下游的低频降 水型更易在初夏到盛夏出现,其他各季节内多雨型 在整个汛期的发生天数均大于历史同期;进入 21 世 纪后,夏季风雨带有再次北移的趋势,长江中下游的 低频降水型在整个汛期发生的次数略有增多趋势, 而其余多雨型在汛期发生的频数则有所减小。

7 结 论

基于经验正交函数分解主要模态相空间内的聚 类方法,划分了季节内大尺度低频异常雨型,深入分 析了南方夏季低频降水的时空特征,指出了中国南 方夏季降水存在明显的季节内低频变化特征,而这 种低频变化主要时空模态的统计量已发生了显著的

年代际变化。

初步将南方夏季低频降水划分为5种季节内雨型:江南型、华南型、东南型、长江型和偏旱型。其气候统计特征显示,与偏旱型相比,4种多雨型出现的次数的总和较多且占优势,平均每年发生4-6次,平均持续时间不到4d,具有较好的持续性。各雨型在季节内交替出现,能够反映大尺度异常降水的低频演变特征。其中,华南、江南和长江型均在7月中旬之前发生次数较多,并且存在时间上的依次推进,说明雨型的发生倾向与同区域实际季风雨带出现的时间是对应的。

结果显示,中国南方 5 种低频雨型与同期的环 流形势和水汽输送形成了很好的对应关系,表明了 每种雨型形成的环流背景,同时各雨型的水汽输送 异常有明显差别:输入长江流域上空的水汽输送异 常主要来自于热带西太平洋、台湾以东的副热带西 太平洋以及孟加拉湾海;江南异常多雨主要为西太 平洋、中纬度西风带以及中高纬度南下的水汽输送 异常的贡献;局地强烈的反气旋导致华南地区降水 异常偏多;汇合于东南区域上空的水汽输送异常主 要来源于印度洋、西太平洋以及中国东海;南方地区 水汽向西西伯利亚平原、青藏高原以及印度高原等 方向异常输出时导致整体偏旱。

另一个重要结论是,各低频雨型统计量在年代 际尺度上存在着显著的变化特征:20世纪60年代 中国南方处于偏旱型多发阶段,70年代低频降水有 所增多,80年代长江中下游的低频降水的各项统计 特征均处于峰值,到了90年代其他各多雨型的统计 特征处于历史同期最高值,进入21世纪后,偏旱型 的各项统计特征处于明显上升趋势,同时,大多数多 雨型统计特征存在着不同程度的减少趋势,这可能 预示着中国南方地区正在进入一个季节内尺度降水 减少的阶段,与中国雨带向北移动的趋势相呼应。 由此可见,中国南方低频雨型统计量发生了显著的 年代际变化,而这种变化所反映的低频降水中心的 南北移动与夏季总降水量的年代际南北移动密切相 关。然而,由于目前只对 51 a 降水资料进行了研 究,进一步按照年代际时段分别考察低频雨型及其 差异性仍需要深入探讨。此外,低频雨型形成的内 在物理机制以及其年代际变化规律与外强迫异常的 关系尚不清楚,这也是下一步着重进行的工作。

Acta Meteorologica Sinica 气象学报 2014,72(6)

项目第三课题组成员对本论文写作的建议和指导。

参考文献

- 陈际龙,黄荣辉. 2008. 亚洲夏季风水汽输送的年际年代际变化与 中国旱涝的关系. 地球物理学报,51(2):352-359
- 陈隆勋,张博,张瑛. 2006. 东亚季风研究的进展. 应用气象学报, 17(6):711-724
- 丁一汇,孙颖,刘芸芸等. 2013. 亚洲夏季风的年际和年代际变化 及其未来预测. 大气科学, 37(2): 253-280
- 顾薇,李崇银,杨辉. 2005. 中国东部夏季主要降水型的年代际变 化及趋势分析. 气象学报,63(5):728-739
- 何金海,陈丽臻. 1988. 南北半球环流的准 40 天振荡与夏季风降水 预报的可能途径. 低纬高原天气,(1):38-49
- 黄琰,封国林,董文杰. 2011. 近 50 年中国气温降水极值分区的时 空变化特征. 气象学报,69(1):126-136
- 江志红,何金海,李建平等.2006.东亚夏季风推进过程的气候特 征及其年代际变化.地理学报,61(7):675-686
- 梁萍,丁一汇.2012.东亚梅雨季节内振荡的气候特征.气象学报, 70(3):418-435
- 李维京, 丑纪范. 1990. 中国月平均降水场的时空相关特征. 高原 气象, 9(3): 284-292
- 李维京, 丑纪范, 李连生. 1992. 中国汛期降水异常的时空演变规 律研究 // 章基嘉, 黄荣辉. 长期天气预报和日地关系研究. 北 京: 海洋出版社, 53-61
- 李崇银. 1990. 大气中的季节内振荡. 大气科学, 14(1): 32-45
- 李崇银,武培立,张勤. 1990. 北半球大气环流 30-60 天振荡的一 些特征. 中国科学(B辑), 20(7): 764-774
- 李崇银,张勤. 1991. 全球大气低频遥相关. 自然科学进展,(4): 330-334
- 李崇银. 1993. 大气低频振荡(修订版). 北京: 气象出版社, 50-83
- 李崇银. 1995. 热带大气季节内振荡的几个基本问题. 热带气象学报, 11(3): 276-288
- 李崇银,龙振夏,穆明权. 2003. 大气季节内振荡及其重要作用. 大 气科学, 27(4): 518-535
- 李崇银. 2004. 大气季节内振荡研究的新进展. 自然科学进展, 14 (7): 734-741
- 缪锦海, Lau K M. 1991. 东亚夏季风降水中 30-60 天低频振荡. 大气科学, 15(5): 65-71
- 任宏利,张培群,李维京等.2006.西北区东部春季降水及其水汽 输送的低频振荡特征.高原气象,25(2):286-292
- 任宏利,张培群,李维京等. 2004a. 中国西北东部地区春季降水及 其水汽输送特征. 气象学报,62(3): 365-374
- 任宏利,高丽,张培群等. 2004b. 相空间中划分大尺度异常雨型的 初步研究. 气象学报,62(4):459-467
- 任宏利,高丽,张培群等. 2005a. 相空间中划分大尺度异常雨型的进一步研究. 气象学报,63(2):216-224
- 任宏利,张培群,丑纪范等.2005b.中国夏季大尺度低频雨型及其 转换模.科学通报,2005,50(24):2790-2799
- 史学丽,丁一汇.2000.1994年中国华南大范围暴雨过程的形成与 夏季风活动的研究.气象学报,58(6):666-678
- 司东,丁一汇,柳艳菊. 2010. 中国梅雨雨带年代际尺度上的北移 及其原因. 科学通报,55(1):68-73
- **致谢:**感谢国家重点基础研究发展计划(2013CB430203)
- 孙林海,赵振国,许力等. 2005. 中国东部季风区夏季雨型的划分

张玉洁等:中国南方夏季低频雨型特征及其年代际变化研究

及其环流成因分析.应用气象学报,16(增刊):56-62

- 王遵娅, 丁一汇, 何金海等. 2004. 近 50 年来中国气候变化特征的 再分析. 气象学报, 62(2): 228-236
- 王遵娅, 丁一汇. 2008a. 中国雨季的气候学特征. 大气科学, 32 (1): 1-13
- 王遵娅,丁一汇.2008b.夏季长江中下游旱涝年季节内振荡气候特征.应用气象学报,19(6):710-715
- 王绍武,叶瑾琳,龚道溢等. 1998. 中国东部夏季降水型的研究. 应 用气象学报,9(增刊):65-74
- 信飞,肖子牛,李泽椿. 2007. 1997 年华南汛期降水异常与大气低频振荡的关系. 气象, 33(12): 23-30
- 徐国强,朱乾根. 2003. 大气低频振荡研究回顾与概述. 气象科技, 31(4): 193-200
- 许力,赵振国,孙林海等.2005.全国大范围多(少)雨型的划分及 环境场特点分析.应用气象学报,16(增刊):77-83
- 杨广基. 1992. 中国东部降水和风场的低频振荡特征. 大气科学, 16(1): 103-110
- 张邦林, 丑纪范. 1991. 经验正交函数在气候数值模拟中的应用. 中国科学(B辑), 21(4): 442-448
- 张邦林, 丑纪范. 1992. 经验正交函数展开精度的稳定性研究. 气象学报, 50(3): 342-345
- 张人禾,武炳义,赵平等.2008.中国东部夏季气候20世纪80年代 后期的年代际转型及其可能成因.气象学报,66(5):697-706
- 张秀丽, 郭品文, 何金海. 2002. 1991 年夏季长江中下游降水和风场的低频振荡特征分析. 南京气象学院学报, 25(3): 388-394
- 赵瑞霞,吴国雄,张宏. 2008. 夏季风期间长江流域的水汽输送状态及其年际变化. 地球物理学报,51(6):1670-1681
- 周晓霞,丁一汇,王盘兴. 2008. 夏季亚洲季风区的水汽输送及其 对中国降水的影响. 气象学报,66(1):59-70
- 左金清,任宏利,李维京等.2009.中国南方夏季低频雨型的季节 内水汽输送特征.地球物理学报,52(9):2210-2221
- 朱乾根,徐国强.2000.1998年夏季中国南部低频降水特征与南海 低频夏季风活动.气象科学,20(3):239-248
- Chen L J, Chen D L, Wang H J, et al. 2009. Regionalization of precipitation regimes in China. Atmos Oceanic Sci Lett, 2(5): 301-307
- Chen L X, Zhu C W, Wang W, et al. 2001. Analysis of the characteristics of 30 - 60 day low-frequency oscillation over Asia during 1998 SCSMEX. Adv Atmos Sci, 18(4): 623-638
- Dole R M. 1986. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation: Structure. Mon Wea Rev, 114(1): 178-207
- He J H, Sun C H, Liu Y Y, et al. 2007. Seasonal transition features of Large-scale moisture transport in the Asian-Australian Monsoon region. Adv Atmos Sci, 24(1); 1-24
- Hendon H H, Liebmann B. 1990. The intraseasonal (30 50 day) oscillation of the Australian summer monsoon. J Atmos Sci, 47 (24): 2909-2923
- Huang R H. 1992. The East Asia/Pacific pattern teleconnection of summer circulation and climate anomaly in East Asia. Acta Me-

teor Sinica, 6(1): 25-37

- Krishnamurti T N, Gadgil S. 1985. On the structure of the 30 to 50 day mode over the globe during FGGE. Tellus, 37A(4): 336-360
- Lau K M, Yang G J, Shen S H. 1988. Seasonal and intra-seasonal climatology of summer monsoon rainfall over East Asia. Mon Wea Rev, 116(1): 18-37
- Leith C E. 1973. The standard error of time-averaged estimates of climatic means. J Appl Meteor, 12(6): 1066-1069
- Paegle J N, Byerle L A, Mo K C. 2000. Intraseasonal modulation of South American summer precipitation. Mon Wea Rev, 128(3): 837-850
- Qian W H, Kang H S, Lee D K. 2002. Distribution of seasonal rainfall in the East Asian monsoon region. Theoret Appl Climatol, 73(3-4): 151-168
- Madden R A, Julian P R. 1971. Detection of a 40 50 day oscillation in the zonal wind in the tropical Pacific. J Atmos Sci, 28 (5): 702-708
- Mo K C, Ghil M. 1988. Cluster analysis of multiple planetary flow regimes. J Geophys Res, 93(D9): 10927-10952
- Mo K C, Higgins R W. 1998. Tropical influences on California precipitation. J Climate, 11(3): 412-430
- Tao S Y, Chen L X. 1987. A review of recent research on the East Asian summer monsoon in China// Chang C P, Krishnamurti T N. Review of Monsoon Meteorology. New York: Oxford Univ. Press, 60-92
- Tian S F, Yasunari T. 1992. Time and Space structure of interannual variations in summer rainfall over China. J Meteor Soc Japan, 70(1): 585-595
- Wang H J. 2011. The weakening of the Asian monsoon circulation after the end of 1970's. Adv Atmos Sci, 8(3): 376-386
- Wheeler M, Hendon H H. 2004. An all-season real-time multivariate MJO index: Development of an index for monitoring and prediction. Mon Wea Rev, 132(8): 1917-1932
- Whitaker J S, Weickmann K M. 2001. Subseasonal variations of tropical convection and week-2 prediction of wintertime western North American rainfall. J Climate, 14(15): 3279-3288
- Yasunari T. 1979. Cloudiness fluctuations associated with the Northern Hemisphere summer monsoon. J Meteor Soc Japan, 57: 227-242
- Zhang L, Wang B Z, Zeng Q C. 2009. Impact of the Madden-Julian Oscillation on summer rainfall in southeast China. J Climate, 22 (2): 201-215
- Zhang R H. 2001. Relations of water vapor transports from Indian monsoon with those over East Asia and the summer rainfall in China. Adv Atmos Sci, 18: 1005-1017
- Zhou TJ, Yu R C. 2005. Atmospheric water vapor transport associated with typical anomalous summer rainfall patterns in China. J Geophys Res, 110D08104, doi:10.1029/2004JD005413