

耶鲁大学-南京信息工程大学大气环境中心

Yale-NUIST Center on Atmospheric Environment

Temporal and Spatial Variations of Methane Emission in a Large and Shallow Eutrophic Lake in Subtropical Climate

Qitao Xiao¹, Mi Zhang¹, Zhenghua Hu¹, Yunqiu Gao¹, Cheng Hu¹, Cheng Liu¹, Shoudong Liu¹, Zhen Zhang¹, Jiayu Zhao¹, Wei Xiao¹, X 1 ee^{1,2}

- 1. Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science & Technology, Nanjing, China
- 2. School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut 06511, USA

Outlines

- > Introduction
- Objective
- Materials and Methods
- Results and Discussion
- Conclusions

Introduction

- □ Shallow lakes with algal bloom or vegetation growth are an importance source of atmospheric CH₄.
- Lake Taihu, a large (area 2400 km²) and shallow (mean depth 1.9 m) subtropical freshwater lake in eastern China, exhibits high spatial heterogeneity in terms of pollution level, macrophyte vegetation abundance and algal growth.

Objectives

- □ Characterizing temporal and spatial variability of the CH₄ flux in the lake;
- Investigating the biological, chemical and physical controls of the observed variabilities;
- Quantifying the roles of submerged vegetation and algal growth in the lake-air methane exchange;
- Determining the relative contributions of diffusion and ebullition to the total flux.

Materials and Methods

The CH₄ diffusion flux at the sampling sites was determined with the transfer

coefficient method: $F_{\text{m,d}} = k \times (C_{\text{w}} - C_{\text{e}})$

Seven biological zones

The measurement of total CH_4 flux ($F_{m.}$ diffusion plus ebullition)

Flux-gradient method determines the total CH_4 flux (F_m) at MLW site

$$F_{\rm m} = -0.55 \, \rho_{\rm a} \, K \, \frac{r_2 - r_1}{z_2 - z_1}$$

r₂-r₁: vertical concentration gradient

K: eddy diffusivity

Xiao et al., 2014; Luo et al., 2016

Flux-gradient CH₄ flux system

Eddy CH₄ flux tower

Results and Discussion

Spatial variations of CH₄ diffusion flux

The annual mean CH₄ diffusion flux of whole lake was 0.094 mmol m⁻² d⁻¹.

Spatial variations of environment factors

NDVI, dissolved oxygen concentration (DO), and depth explained 78% of the observed spatial variability in the methane flux (p < 0.01).

Temporal variations of CH₄ diffusion flux

At all sampling sites, the highest CH₄ flux appeared in summer, and the lowest appeared in winter.

Control factor on CH₄ flux temporal variations

Total CH₄ flux versus diffusion flux

	CH ₄	Ebullition		
	Total	Diffusion	Ebullition	percentage
MLW: open water zone	0.707	0.120	0.507	72%
BFG: macrophyte zone	0.319	0.184	0.135	41%

CH₄ flux in the seven zones of Lake Taihu

	Zones	Surface area	CH ₄ flux (mmol m ⁻² d ⁻¹)			
		(km ²)	Total flux	Diffusion flux	Ebullition flux	
East Zone Macrohytes Dongtaihu B Southwest Zo Eutrophic Northwest Zo	Meiliang Bay	100	0.306	0.085	0.224	
	Gonghu Bay	215.6	0.216	0.064	0.156	
	East Zone	316.4	0.265	0.177	0.109	
	Dongtaihu Bay	131	0.405	0.227	0.167	
	Southwest Zone	443.2	0.144	0.039	0.104	
	Northwest Zone	394.1	0.688	0.191	0.497	
	Central Zone	737.5	0.277	0.026	0.200	
	Whole lake	2338	0.269	0.094	0.175	

The CH₄ flux of the lake (0.269 mmol m⁻² d⁻¹, or 1.57 g m⁻² year⁻¹) was similar to the medium value (1.6 g CH₄ m⁻² year⁻¹) in inland waters (Bastviken *et al.*, 2011; Ortiz-Llorente *et al.*,2012).

Conclusions

- □ The seasonal pattern of the CH₄ flux was mostly regulated by water temperature.
- □ The spatial variations of the CH₄ emission resulted mostly from uneven growth of algae and from spatial variability in aquatic vegetation.
- □ The annual mean lake CH₄ emission flux after correction for the ebullition contribution (1.57 g CH₄ m⁻² year⁻¹) was comparable to the mean flux of global lakes.

LAND-CHANGE EFFECTS ON CLIMATE

