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Figure S1. Multi-year mean seasonal variations of site-measured (solid lines) and IsoGSM 

simulated (dash lines) precipitation d-excess. 
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Figure S2. IsoGSM-simulated spatial distribution of mean vertical integral water vapor (water 

vapor transport integrated between the surface layer to 300 hPa level) transport (plotted as 

vectors) and mean evaporation δ18O isotope ratios (plotted as shading), for May and September. 
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Figure S3. IsoGSM-simulated spatial distribution of mean vertical integral water vapor (water 

vapor transport integrated between the surface layer to 300 hPa level) transport (plotted as 

vectors) and mean evaporation d-excess isotope ratios (plotted as shading), for May and 

September. 
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Figure S4. Time evolution of IsoGSM-simulated specific humidity along the airmass back 

trajectory for NK and PK in May and September. 
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Figure S5. The correlations between OLR and precipitable water content for NK and PK in May 

and September. The regression (dish line) estimated from four months data mentioned above. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S6. Time evolution of IsoGSM-simulated precipitable water content along the airmass 

back trajectory for NK and PK in May and September. 
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Figure S7.  Time evolution of observed outgoing longwave radiation along the airmass back 

trajectory for NK and PK in May and September. 
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Figure S8. IsoGSM-simulated spatial distribution of seasonal means of vertical integral water 

vapor (water vapor transport integrated between the surface layer to 300 hPa level) transport 

(plotted as vectors) and evaporation δ18O isotope ratios (plotted as shading) from 2003 to 2013. 
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Figure S9. IsoGSM-simulated spatial distribution of seasonal means of vertical integral water 

vapor (water vapor transport integrated between the surface layer to 300 hPa level) transport 

(plotted as vectors) and evaporation d-excess isotope ratios (plotted as shading) from 2003 to 

2013. 
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Figure S10. Spatial distribution of correlation coefficients (R) between monthly precipitation 

δ18O and OLR for DJF season. Only areas with R > 0.3 are shown. 

 




