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A B S T R A C T

Currently, haze events in winter occur more frequently than decades ago, especially in Eastern and Central
China, including the Yangtze River Delta (YRD). WRF-Chem is applied in this study to explore the discrepancies
of the simulated air pollutants induced by employing different emission inventories, particularly during haze
events. Two inventories are involved in this study, MEIC (Multi-resolution Emission Inventory for China) and
GlobEmission (inventory from GlobEmission project emission estimates), representing the emission inventories
based on quite different ways. We first compared monthly emissions of SO2 and NOx in two inventories during
January over YRD, and found the mean differences of SO2 (NOx) are 20% (7%), with the ranges of 0%–47%
(−100%–100%). The largest differences are both found in Shanghai, with 47% for SO2 (MEIC in 2010,
GlobEmission in 2014), and 45% for NOx (MEIC in 2010, GlobEmission in 2015), respectively, partly because the
reduction of emissions was large during the 12th Five-Year Plan (2011–2015) in this area. By comparing the
simulated air pollutants mass concentrations using two inventories with in-situ observations during January
2015, we found that the simulated SO2 using MEIC and GlobEmission are both higher than observations, with
mean normalized biases of 207% and 121% over YRD, respectively, and much larger in the city cluster of
Nanjing-Shanghai, where are nearly four (MEIC) and three times (GlobEmission) higher than observations. In
contrast, NO2 simulations using GlobEmission are lower than observations (22%) and MEIC simulations (45%)
over YRD. The largest biases of GlobEmission simulation are found in Zhejiang province (over 70%). The biases
of simulated monthly mean PM2.5 are 38% (MEIC) and 30% (GlobEmission) over YRD, respectively. A case study
during heavy haze event shows that the biases increase to 61% (MEIC) and 39% (GlobEmission), and spatial
correlation coefficient in the simulation using GlobEmission increase to 0.69 over YRD. Temporal correlation
coefficients in the city cluster of Nanjing-Shanghai increase from 0.5 (MEIC) to 0.7 (GlobEmission).

1. Introduction

More frequent occurrence of haze events with extremely high PM2.5

concentrations in China during wintertime has drawn a lot of attention
in recent years. Yangtze River Delta (YRD) region is one of the most
densely populated and fastest economically growing areas in China and
has been suffering from severe air pollution. For instance, four haze

episodes occurred and affected many cities in the YRD during January
2015, which caused serious health damage and economic loss. Many
field observations and modeling studies have investigated the formation
mechanism of heavy haze (Wang et al., 2015a; Zhang et al., 2015; Fu
et al., 2016a, 2016b; Sun et al., 2016; Zheng et al., 2016), such as high
emissions of primary air pollutants, stagnant weather conditions, re-
gional pollution transport and fast gas-to-particle conversion, while the
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Fig. 1. Total annual SO2 and NOx emissions in YRD from MEIC and GlobEmission inventories (unit: Gg yr−1 for SO2, Gg N yr−1 for NOx).

Fig. 2. Spatial distributions of monthly emissions for SO2 and NOx from GlobEmission inventory (a, d) and MEIC inventory (b, e) (unit: Gg grid−1 mon−1 for SO2, Gg
N grid−1 mon−1 for NOx), and the differences between GlobEmission and MEIC (c, f) during January.
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causes are still not well understood. Some previous studies show that
the rapid increase of secondary aerosols is considered to be one of the
main causes of haze events in China. Wang et al. (2014a,b) found that
sulfate, nitrate, and ammonium increased rapidly and contributed al-
most half of the total PM2.5 concentrations during the haze episode in
2013 over North China Plain. Chen et al. (2016) and Gao et al. (2016a,
2016b) illustrated that secondary pollutants became the major com-
ponents of PM2.5 and increased significantly from non-haze to haze
days. Numerical models are favorable tool to predict air pollutants and
understand physical and chemical processes. However, large un-
certainties still remain in model predictions of air pollutants, which
may be caused by unclear and/or inaccurate physical and chemical
mechanisms associated with air pollutants, e.g. heterogeneous chem-
istry (Cheng et al., 2016; Wang et al., 2016; Guo et al., 2017; Li et al.,
2017a), uncertainties in meteorological conditions, as well as un-
certainties of emission inventory.

Currently, the Multi-resolution Emission Inventory for China (MEIC)

emission inventory developed by Tsinghua University is often used in
the numerical model for air quality studies over China (Chang et al.,
2016; Gao et al., 2016b; Sun et al., 2016; Li et al., 2017a; Zhou et al.,
2017). The emissions of air pollutants are publicly provided for three
years (2008, 2010 and 2012), which have probably changed since then
due to control policy. Studies indicate that SO2 emissions have de-
creased by at least 30% in recent years, especially after 2010–2011,
from both bottom-up emission inventories (Lu et al., 2011; Chen et al.,
2016; Xia et al., 2016) and satellite observations (Wang et al., 2015b;
Krotkov et al., 2016, van der A et al., 2017), due to effective emission
control and the increase of fuel combustion efficiency by promoting
desulfurization technology and optimization of power plants operation.
The emissions of NOx based on various methods including bottom-up,
top-down, and satellite observations all indicate an increasing tendency
nationwide before 2011 (Zhang et al., 2012; Mijling et al., 2013; Xia
et al., 2016). Satellite observations show that NOx emissions reach a
peak in 2011 over eastern China and then start to decrease in 2012
(Krotkov et al., 2016), which is consistent with the control policy that
the Chinese government firstly set a target for 10% reduction of NOx

emission during the 12th Five-Year Plan (2011–2015). Therefore, the
discrepancy between the baseline year of inventories and the years
afterwards may lead to deviations of the simulated results. The esti-
mations based on satellite observations have advantages over bottom-
up emission inventories, since the former are spatially consistent and in
high temporal resolution, and thus can be updated shortly after the
satellite data become available.

In order to reduce the uncertainties from emission inventories, it is
necessary to understand the impact of different emission inventories on
the simulated air pollutants. Two inventories, MEIC and GlobEmission,
representing the emission inventories based on quite different ways, are
used in this study. MEIC is based on typical bottom-up approach while
GlobEmission is representative of top-down inventory, in which the
emissions are estimated from satellite retrievals. The main purpose of
this study is to explore the differences in the simulated PM2.5 from two
inventories during winter over YRD, especially during haze event. The
emissions of SO2 and NOx in GlobEmission have been discussed in
previous studies (Ding et al., 2017a, b), the discrepancies of the emis-
sions in comparisons to other inventories (e.g. MEIC) and its impact on
the simulated PM2.5, particularly during winter haze event over heavy
polluted regions such as YRD, still remains unclear.

The paper is organized as below. We will briefly introduce the two
inventories (MIEC and GlobEmission) and compare SO2 and NOx

emissions over YRD in section 2. The description and configuration of
model, as well as the introduction of in-situ measurements and me-
teorology evaluation, are presented in section 3. The simulations based
on MEIC and GlobEmission by WRF-Chem, the impact of the two in-
ventories on simulated air pollutants during January 2015, and a se-
lected heavy haze event are analyzed in section 4. The summary and
discussion are given in section 5.

2. Emission inventories

2.1. MEIC

Multi-resolution Emission Inventory for China (MEIC: http://www.
meicmodel.org/) is a bottom-up inventory framework developed by
Tsinghua University, in which a technology-based methodology was
used to calculate activity data, such as fuel consumption or industrial
production, emission factors of combustion or production technology,
and penetration rate and emission reduction efficiency of emission
controls (Zhao et al., 2014; Saikawa et al., 2017). Activity rates are
derived from local provincial statistics in China and emission factors are
derived from the best available local measurements and recent peer-
reviewed data for China. The monthly gridded emissions are generated
by applying source-based spatial and temporal profiles (Li et al., 2018).
Provincial emissions are firstly distributed to counties, then further

Fig. 3. The model domains (The red solid circle represents the location of
Nanjing). (For interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)

Fig. 4. Location of sites with in-situ measurements on air pollutants (Triangles
denote 282 air quality monitoring sites of the MEP network, a green solid circle
denotes Pudong site in Shanghai which measures hourly aerosol inorganic
chemical components). (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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distributed to grids. The former process is based on statistics of county
(i.e., GDP (gross domestic product), industrial GDP, total population,
urban population, rural population, agricultural activity, vehicle

population), and the latter is based on gridded maps as spatial proxies
(i.e., population density map, road network). The emissions source
sectors provide ten major air pollutants (SO2, NOx, CO, NMVOC, NH3,

Fig. 5. Simulated (red line) and observed (black line) hourly temperature (T2) (ãc), relative humidity (RH2) (d∼ f), precipitation (PRE) (g∼ i), wind speed (WS10)
(j∼ l) and wind direction (WD10) (m∼ o) at Shanghai, Nanjing, and Hangzhou. (For interpretation of the references to colour in this figure legend, the reader is
referred to the Web version of this article.)
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CO2, PM2.5, PM10, BC, OC) from five sources such as power, industry,
residential, transportation and agriculture. Li et al. (2017b) found that
typical uncertainties of 12%–31% for SO2, 31%–37% for NOx and
107%–133% for PM2.5 in bottom-up inventories over China. Un-
certainties mainly come from activity statistics and control measures,
such as the FGD (flue-gas desulfurization) device penetration rate and
removal efficiency, LNB (low-NOx burner) application rate and abate-
ment efficiency in power plants, emission factors of industrial boilers
and various vehicle types, and vehicle fleet (Li et al., 2018). In addition,
the emission factors and activities are changing quickly with time due
to the rapid implementation of new technologies and air quality control
regulations for power plants and vehicles in China, which make bottom-
up emission inventories outdated and more uncertain (Zheng et al.,
2014; Liu et al., 2015).

Users can get access to the monthly gridded emissions of three
spatial resolutions (0.25°, 0.5°, 1°) for the year 2008, 2010 and 2012.
Since the differences of emissions in 2010 and 2012 from MEIC in-
ventories are quite small, the monthly emissions at 0.25°× 0.25° gen-
erated from MEIC v1.2 in 2010 are used in this study.

2.2. GlobEmission

GlobEmission project, part of Data User Element program of ESA
(http://www.globemission.eu/index.php), aims to develop emissions
estimated from satellite observations of air constituents and has been
used in the MarcoPolo inventory by applying the sector-split of MEIC
(power, industry, residential, transportation) (http://www.marcopolo-
panda.eu/). The derived SO2 emissions over China use space-based
observations of SO2 vertical columns densities from the Ozone
Monitoring Instrument on board the Aura satellite, OMI/Aura, which
are retrieved by using the Royal Belgian Institute for Space Aeronomy
(BIRA) algorithm (Theys et al., 2015). The driving SO2 emissions have
been provided by MEIC in 2010, and then adjusted by applying a ratio,
based on the variation tendency of satellite observations, to MEIC in-
ventory on a provincial level (Koukouli et al., 2017). Therefore, the
uncertainties of SO2 emissions derived by the above methods mainly
come from the driving SO2 emissions inventory and the observed SO2

vertical column densities from satellite.
The NOx emissions are estimated by the Daily Emission estimates

Constrained by Satellite Observation (DECSO version 5) algorithm
based on extended Kalman filter. DECSO uses the CHIMERE model on a
0.25° resolution to calculate the local and non-local sensitivities of
column concentration to gridded emission, together with OMI tropo-
spheric NO2 column data based on the DOMINO version 2 retrieval
algorithm as a constraint to update emissions (Boersma et al., 2011). A

more detailed description of DECSO algorithm can be found in Mijling
and van der A (2012), Mijling et al. (2013) and Ding et al. (2015,
2017b). Note that the accuracy of emissions largely depends on the
accuracy of the satellite-retrieved NO2 and the chemical transport
model (CTM) used in the inversion. The biases in NO2 tropospheric
columns of DOMINO version 2 are partly due to the shielding effect of
high aerosol loading (Shaiganfar et al., 2011; Chimot et al., 2016), the
calculation of air mass factor for retrievals at large solar zenith angles
by the radiance transfer model (Lorente et al., 2017), and the estimated
stratospheric background. In addition, the biases from the descriptions
of chemistry, transport, and removal processes in the CTM cannot be
ruled out.

In this study, emissions of SO2 at 0.25°× 0.25° spatial resolution
during January 2014 in China (the latest SO2 emission inventories are
available for 2014) and emissions of NOx at same spatial resolution
during January 2015 over East China are used for simulation. The
emissions of other species come from MEIC 2010 inventory.

2.3. Comparisons of two emission inventories

Emissions inventories of air pollutants are crucial information for
policy maker and are also important for simulations of air pollutants.
However, large uncertainties exist in emissions estimates, so it is es-
sential to assess different inventories for a better understanding of air
pollution over China.

2.3.1. Annual mean
Fig. 1 shows annual mean emissions of SO2 and NOx over YRD. SO2

emissions in 2010 are identical in MEIC and GlobEmission because the
driving SO2 emissions in the latter are based on the former inventory,
while NOx emissions in GlobEmission are 31% lower than MEIC. Lower
NOx emissions in GlobEmission have also been reported by Ding et al.
(2017a). It should be noted that NOx emissions in GlobEmission are
total emissions from both anthropogenic, biogenic, and shipping
emissions, while MEIC only from anthropogenic emissions. The inter-
annual variations in GlobEmission show that the maxima SO2 emissions
occur in 2011, up to 2979 Gg yr−1, while the minimum in 2014, only
2005 Gg yr−1. Similarly, the highest NOx emissions are also found in
2011, up to 993 Gg yr−1. The NOx emissions between 2012 and 2014
are quite close to that in 2010, followed by the lowest in 2015 and
2016, which is mainly due to the control of NOx emissions in the 12th
Five-Year Plan (2011–2015) (Zhang et al., 2018).

2.3.2. Spatial distribution
Fig. 2 shows the spatial distributions of monthly emissions for SO2,

NOx and their differences between MEIC and GlobEmission (i.e. (Glo-
bEmission-MEIC)/MEIC×100%). It is shown that the spatial dis-
tributions of SO2 emissions from two inventories are quite consistent,
with high emissions in the southern Jiangsu to northern Zhejiang and
Shanghai, where are the most industrially advanced and densely po-
pulated region over YRD. In addition, the differences of spatial dis-
tributions between two inventories are dependent on regional division,
since SO2 emissions in GlobEmission are estimated by multiplying a
ratio to MEIC inventory on a provincial level, which is based on the
variation tendency of SO2 column concentrations from satellite ob-
servations. The differences range from 0% to 47% during January over
YRD, with the mean value of 20%. The largest differences are found in
Shanghai, up to 47%, followed by Anhui province (29%), while the
smallest differences in Jiangsu and Zhejiang province, with only 20%
and 16%, respectively.

Similar to SO2, NOx high emissions are also concentrated in the
southern Jiangsu to northern Zhejiang and Shanghai (shown in Fig. 2d
and e). Different algorithms are used for SO2 and NOx in GlobEmission.
An advanced inversion technique, DECSO, which based on the Kalman
filter, was used to estimate NOx emissions. This inversion method can
detect new emission sources which are not included in the MEIC

Table 1
Statistical metrics for meteorological variables during January 2015 at three
cities (Shanghai, Nanjing, and Hangzhou) over YRD. (σ: standard deviations,
T2: 2m temperature (°C), RH2: 2m relative humidity (%), WS10: 10m wind
speed (m s−1)).

Variables Shanghai Nanjing Hangzhou

T2 Obs(σ) 6.5(4.0) 5.2(3.9) 6.7(3.9)
Mod(σ) 7.5(3.0) 5.6(3.6) 5.9(4.1)
MB 1.0 0.4 −0.8
RMSE 2.18 2.22 2.21

RH2 Obs(σ) 69.2(19.1) 71.9(19.3) 69.7(19.2)
Mod(σ) 68.5(16.6) 60.9(17.8) 64.4(19.6)
MB −0.7 −11.0 −5.3
RMSE 13.5 16.5 13.3

WS10 Obs(σ) 2.2(1.1) 2.3(1.1) 2.1(0.9)
Mod(σ) 4.7(1.8) 2.8(1.5) 2.3(0.8)
MB 2.5 0.5 0.2
RMSE 2.8 1.7 0.8
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Fig. 6. Spatial distribution of simulated and observed monthly mean SO2 (a, b), NO2 (d, e), PM2.5 (g, h) concentrations (unit: μg m−3), and the relative differences of
simulated SO2 (c), NO2 (f), PM2.5 (i) using GlobEmission and MEIC ((GlobEmission-MEIC)/MEIC× 100%) during January over YRD (unit: %). (The circles represent
the observed air pollutants concentrations, and the black arrows indicate simulated surface wind fields.)
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inventory. Therefore, NOx emissions from ocean surface near the coast
are included in GlobEmission inventory. In addition, SO2 emissions in
GlobEmission are lower than MEIC over the entire YRD, but NOx

emissions in GlobEmission are lower than MEIC in some grids but
higher in other grids. The differences range from −100% to 100% over
YRD, with the mean value of −7%. The largest negative differences are
found in Shanghai (45%), one of the first cities in China to implement
strict regulations for vehicle emissions (Liu et al., 2016), followed by
Hangzhou (16%) and Hefei (5%), while the lowest negative differences
in Nanjing, only 4%.

3. Model description, observational data and model evaluation

3.1. Model description

The WRF-Chem model v3.6.1 (Grell, 2005) is used in this study to
investigate the impact of two emission inventories on the simulated air
pollutants over YRD. The simulation is performed on a domain in
27 km×27 km horizontal resolution over eastern China and nested to a
domain in 9 km×9 km covering the YRD (Fig. 3), with 30 vertical
levels. Gas-phase chemical mechanism CBMZ (Zaveri and Peters, 1999)
and 4-bin sectional MOSAIC aerosol model with aqueous chemistry
(Zaveri et al., 2008) are chosen. MOSAIC treats all the important
aerosol species, including sulfate, nitrate, chloride, ammonium, so-
dium, BC, primary organic mass, liquid water, and other inorganic
mass. Other parameterization schemes for physical processes include
Morrison 2-moment (Morrison et al., 2008), RRTMG (Rapid Radiative
Transfer Model for GCMs) short and long wave radiation (Iacono et al.,
2008), Noah land surface model, and the Yonsei University planetary
boundary layer parameterization (Hong et al., 2006). Initial meteor-
ological conditions are obtained from the National Center for En-
vironmental Prediction (NCEP) Final Analysis (FNL) dataset (http://
rda.ucar.edu/datasets/ds083.2/) with a horizontal resolution of
1°× 1°. The chemical initial and boundary conditions are provided by
the Model for Ozone and Related chemical Tracers, version 4 (MO-
ZART-4) (Emmons et al., 2010). The emission data is interpolated into
the model domain to generate hourly emission data, using the nearest
neighbor interpolation method. As four haze episodes occurred and
influenced multiple cities over YRD during January 2015, we selected
this period for our study. The simulation started on 30 December 2014
and ended up on 31 January 2015, with the first 2 day as a spin-up.

3.2. Observational data

The meteorological conditions are key factors to control the

Fig. 7. Scatter plots of monthly mean SO2 (a), NO2 (b), and PM2.5 (c) concentrations between simulations and observations during January over YRD (unit: μg m−3).
The black solid line in the graph is 1:1 line.

Table 2
The monthly mean concentrations (Avg, μg m−3) and standard deviations (σ, μg
m−3) (in brackets) of SO2 from observations and simulations using MEIC and
GlobEmission (GE) inventories in 8 cities of YRD during January (NJ: Nanjing,
LY: Lianyungang, YZ: Yangzhou, CZ: Changzhou, SH: Shanghai, HZ: Hangzhou,
NB: Ningbo, HF: Hefei). Correlation coefficients (R) and mean normalized bias
(MNB, %) between observations and simulations are also shown in the table.

OBS MEIC GE

Avg(σ) Avg(σ) R MNB Avg(σ) R MNB

NJ 31(19) 118(142) 0.44 281 86(107) 0.43 177
LY 43(26) 42(48) 0.63 −2 33(36) 0.63 −23
YZ 34(24) 82(125) 0.39 141 61(94) 0.37 79
CZ 41(25) 212(207) 0.45 417 158(153) 0.44 285
SH 35(21) 159(157) 0.47 354 92(94) 0.53 163
HZ 25(13) 55(41) 0.37 120 40(29) 0.38 60
NB 27(17) 51(45) 0.24 89 36(33) 0.26 33
HF 28(11) 75(62) 0.42 168 53(44) 0.41 89

Table 3
Same as Table 1, but for NO2.

OBS MEIC GE

Avg(σ) Avg(σ) R MNB Avg(σ) R MNB

NJ 67(30) 70(38) 0.73 4 48(37) 0.67 −28
LY 42(20) 47(39) 0.78 12 25(25) 0.59 −40
YZ 37(23) 60(40) 0.72 62 38(45) 0.58 3
CZ 53(28) 77(36) 0.78 45 60(45) 0.73 13
SH 63(32) 70(35) 0.74 11 52(41) 0.77 −17
HZ 63(22) 59(27) 0.23 −6 19(16) 0.26 −70
NB 62(27) 61(34) 0.56 −2 16(16) 0.43 −73
HF 37(12) 66(31) 0.58 78 29(31) 0.44 −22

Table 4
Same as Table 1, but for PM2.5.

OBS MEIC GE

Avg(σ) Avg(σ) R MNB Avg(σ) R MNB

NJ 100(59) 131 (87) 0.68 31 125(87) 0.67 25
LY 90(75) 80 (70) 0.84 −11 85(83) 0.84 −6
YZ 83(46) 116 (86) 0.80 40 110(86) 0.79 32
CZ 112(61) 148 (102) 0.77 32 142(99) 0.77 27
SH 82(63) 103 (86) 0.83 26 100(85) 0.81 22
HZ 90.6(50) 91.1 (58) 0.80 −0.6 85(59) 0.77 −6
NB 85(60) 69 (52) 0.84 −19 66(52) 0.84 −22
HF 104(55) 148 (79) 0.65 42 135(76) 0.68 30
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temporal and spatial distribution of the simulated air pollutants, it thus
is essential to evaluate the modeled meteorological variables. The me-
teorological variables, such as 2m temperature (T2), 2 m relative hu-
midity (RH2), precipitation (PRE), 10m wind speed (WS10) and wind
direction (WD10), at 14, 13 and 16 meteorological stations in Shanghai,
Nanjing and Hangzhou from Meteorological Information

Comprehensive Analysis and Process System (MICAPS) (Gao et al.,
2018), are used for evaluation in this study.

Starting from the year of 2013, the real-time hourly surface mon-
itoring data on air quality, such as SO2, NO2, CO, O3, PM2.5, PM10 mass
concentrations, are publicly released by the Ministry of Environmental
Protection (MEP) in China (Zhang and Cao, 2015). We use the hourly

Fig. 8. Time series of observed (Obs) and simulated (using MEIC and GlobEmission inventories) hourly PM2.5 in 8 cities of YRD. (The orange line in the graph
represents the mass concentration of 75 μgm−3). (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this
article.)
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surface SO2, NO2, PM2.5 concentrations from a total of 282 air quality
monitoring sites of the MEP network over YRD (http://datacenter.mep.
gov.cn), and the majority of these sites are located in the city center
(MEP, 2013), which are required to be distributed in the developed area
of the city and not too close to the stationary emission sources or roads
(Liu et al., 2018). The location of sites is shown in Fig. 4. The model
grid with one, two, three and four sites account for 60%, 26%, 12% and
2% to the total grids, respectively, so the mean values of observations
from all sites in the same grid are compared with the results of model
grids. In addition, hourly inorganic chemical components in PM2.5

(sulfate, nitrate, ammonium) measured by the Monitor for AeRosols
and GAses in ambient air (MARGA, Metrohm Applikon B.V., the
Netherlands) (Brink et al., 2007) at Pudong site in Shanghai are also
used (As the green solid circle shown in Fig. 4). Time periods of the
observation data are all in January 2015.

3.3. Model evaluation

The statistical metrics, such as average and standard deviation,
correlation coefficient (R), mean bias (MB), mean normalized bias
(MNB) and root mean square error (RMSE), are used to evaluate the
model performance. The definitions of these statistical quantities can be
found in Morris et al. (2005) and Willmott and Matsuura (2005), the
MNB and RMSE are calculated below:

∑ ⎜ ⎟= ⎛
⎝

− ⎞
⎠=n

sim obs
obs

MNB 1

i

N
i i

i1 (1)

∑= ⎡

⎣
⎢ − ⎤

⎦
⎥

=n
sim obsRMSE 1 ( )

i

N

i i
1

2
1/2

(2)

in which sim and obs represent the simulated and observed values, and
n is the number of samples.

As the differences in simulated meteorological fields based on two
inventories are quite trivial (Fig. A1), only the simulations from MEIC
are shown here. Fig. 5 compares the temporal variations of simulated
and observed hourly temperature (ãc), relative humidity (d∼ f), pre-
cipitation (g∼ i), wind speed (j∼ l) and wind direction (m∼ o) at
three cities (Shanghai, Nanjing, and Hangzhou) over YRD. Overall, the
variations of surface temperature and relative humidity are captured
quite well by the model, with correlation coefficients (R) in three cities
of 0.88, 0.85, and 0.88 for surface temperature, and 0.72, 0.80, and
0.82 for relative humidity. As shown in Table 1, MB and RMSE of
surface temperature vary from −0.8 °C to 1.0 °C and 2.18 °C–2.22 °C,
respectively. The simulated relative humidity agrees well with ob-
servations, with MB and RMSE ranging from −11.0% to −0.7% and
13.3%–16.5%, respectively. Precipitation during this month is quite
limited, and weak precipitation was found during January 13th to 14th
in three cities, which the model can reproduce well. Wind speeds are
overestimated throughout the entire period, especially in Shanghai,
with positive MB and RMSE varying from 0.2 m s−1 to 2.5 m s−1 and
0.8 m s−1 to 2.8 m s−1, respectively, which may cause some biases of
the simulated air pollutants. The simulations of wind direction are
basically consistent with measurements, with correlation coefficients
(R) up to 0.63, 0.74, 0.56 at three cities, respectively.

Fig. 9. Spatial distribution of simulated (using MEIC and GlobEmission inventories) and observed mean PM2.5 (a, b) concentrations (unit: μg m−3), and the relative
differences of simulations (GlobEmission-MEIC)/MEIC×100%) during haze event (Ep2: 8th to 11th January) over YRD (unit: %). The wind speed and wind
direction are also plotted in Fig. (c). (The circles represent the observed air pollutants concentrations, and the black arrows indicate simulated surface wind fields.)

Fig. 10. Scatter plots of mean PM2.5 concentrations between simulations and
observations during haze event (Ep2: 8th to 11th January) over YRD (unit: μg
m−3). The black solid line in the graph is 1:1 line.
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Fig. 11. Normalized mean bias (MNB) and correla-
tion coefficients (R) of the simulated PM2.5 con-
centrations using MEIC (orange) and GlobEmission
inventory (blue) during haze event (Ep2: 8th to 11th
January) in 8 cities of YRD. (For interpretation of the
references to colour in this figure legend, the reader
is referred to the Web version of this article.)

Fig. 12. Time series of observed (Obs) and simulated hourly SO2, NO2, sulfate, nitrate concentrations during haze event (Ep2: 8th to 11th January) at Pudong site in
Shanghai.
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4. Impacts of emission inventories on simulated air pollutants

4.1. Simulations based on two emission inventories

Fig. 6 shows that spatial distributions of monthly SO2, NO2, and
PM2.5 concentrations from the simulations using MEIC and GlobEmis-
sion, their relative differences (i.e. (GlobEmission-MEIC)/
MEIC×100%), as well as the observations. Overall, spatial distribu-
tions of the simulated air pollutants (SO2, NO2, and PM2.5) are quite
similar from two inventories, with high magnitudes in Southern Jiangsu
and Northern Zhejiang province. For SO2, spatial correlation coeffi-
cients between simulations and observations are only 0.27 (MEIC) and
0.30 (GlobEmission), respectively. Both MNB and RMSE are reduced by
86% and 30 μgm−3 in the simulations with GlobEmission, possibly
because SO2 emissions in MEIC inventory have decreased by at least
30% during this period (2010–2015) (Chen et al., 2016; Krotkov et al.,
2016). The simulations using GlobEmission and MEIC have larger dif-
ference (up to 117 μgm−3) when SO2 concentrations are higher than
20 μgm−3, indicating that SO2 emissions in polluted areas have been
substantially reduced in recent years (Fig. 7a). The simulated SO2 from
both inventories are higher than the in-situ observations, especially in
the polluted area including the city cluster of Nanjing-Shanghai. For
instance, the simulations are nearly three (MEIC) and two times (Glo-
bEmission) higher than observations in Nanjing (Table 2). The largest
biases in comparisons to observations, either using MEIC or GlobE-
mission, are found in the city cluster of Nanjing-Shanghai, possibly
indicating that SO2 emissions are overestimated in both inventories. In
addition, other physical and/or chemical processes may contribute to
this discrepancy, such as underestimation dry and wet deposition of
SO2 and gas phase oxidation, the uncertainties of aqueous-phase
chemistry, as well as missing heterogeneous sulfate formation in cur-
rent model version. The biases between the simulations and in-situ
observations in Zhejiang and Anhui province are relatively lower, with
MNB of 104%, 168% (MEIC) and 46%, 89% (GlobEmission), respec-
tively. It is shown that the standard deviation of SO2 in 8 cities over
YRD range from 11 to 26 μgm−3 from the observed, while the standard
deviations of simulations with two inventories are higher than that of
observations (Table 2), indicating large variation SO2 in the simula-
tions.

On the contrary, the spatial correlation coefficient of the simulated
NO2 slightly increases from 0.43 to 0.49, and RMSE slightly reduces
from 23 μgm−3 to 21 μgm−3 with MEIC than GlobEmission. The
scatter plot (Fig. 7b) indicates that the simulations with MEIC over-
estimate while the simulations with GlobEmission underestimate the
monthly mean NO2 concentrations over YRD. Relative to observations,
the biases of simulations using MEIC are less than 12% in most areas
(Table 3). However, the simulations using GlobEmission are 22% lower
than in-situ observations, with quite large negative biases found in
Zhejiang province (over 70%). A few reasons possibly contribute to
underestimations of NO2. Firstly, the retrievals of NO2 columns from
OMI based on DOMINO v2 might have some disadvantages, such as
biases in the calculation of air mass factor for retrievals at large solar
zenith angles by the radiance transfer model and possibly biases in the
estimated stratospheric background (Ding et al., 2017b; Liu et al., 2018;
Lorente et al., 2017). Secondly, since aerosols have radiative impacts on
tropospheric actinic flux, photolysis rates, and thus photochemical re-
actions rates associated with NOx concentration (Mailler et al., 2017),
an underestimation of PM2.5 concentrations in the model might lead to
strong actinic flux and reaction of NO2 with OH, and thus weak NO2

concentrations. Also, according to previous studies, NO2 are measured
using commercial chemiluminescence analyzers which are catalytically
transformed into NO by a molybdenum converter and subsequently
measured with chemiluminescence, and other reactive oxidized ni-
trogen compounds, such as alkyl nitrate (AN), peroxyacetyl nitrate
(PAN) and HNO3, are also partly converted to NO, resulting in an
overestimation of measured NO2, particularly at relatively clean regions

and low latitudes (Steinbacher et al., 2007; Zhang and Cao, 2015; Liu
et al., 2018). Therefore, the observed higher NO2 may also cause large
differences compared with the simulations.

The simulated monthly mean PM2.5 concentrations using
GlobEmission and MEIC show overall small differences, although large
differences are found in simulated NO2 (Fig. 7c). Overall, the simulated
PM2.5 using both inventories are both 20% higher than the observations
in most areas, MNB and RMSE are reduced slightly (8% and 6 μgm−3)
over the whole YRD, and the spatial correlation coefficient is increased
to 0.55 from 0.43, from the simulations with GlobEmission relative to
MEIC. The standard deviations of simulations, as well as temporal
correlation coefficients of observations and simulations using two in-
ventories, are quite similar in 8 cities of YRD (Table 4). Earlier studies
(Wang et al., 2014b; Chen et al., 2016; Gao et al., 2016a, b) indicated
that missing heterogeneous sulfate formation in the current model
might cause low gas-to-particle conversion and thus overestimation of
SO2 and underestimation of sulfate. Since SO2 and NOx compete for
NH3 in the atmosphere to convert to sulfate and nitrate, so lower
conversion rate of SO2 results in a large amount of free NH3, which
react with NOx to produce nitrate. In addition, the simulated nitrate is
much higher than the observations due to lower temperature in winter
and relatively stable chemical properties of nitrate. As GlobEmission
may underestimate the NOx emissions in this area, the biases of simu-
lated nitrate can be reduced to a certain extent, which leads to the
biases of simulated PM2.5 using GlobEmission are lower than when
using MEIC.

4.2. Case studies of a haze event

The impact of emission inventories on the simulated air pollutants
during winter over YRD have been studied in section 4.1. However, the
monthly mean results possibly deviate the actual differences induced by
two inventories to some extent due to the impact of long distance
pollution transport. In this section, we focus on haze event in winter,
which is mainly caused by local pollution, to further investigate the
importance of inventories on the predicted haze status. According to the
National Ambient Air Quality Standard (NAAQS) Grade II implemented
in 2016 (GB3095-2012), a haze event is defined when daily average
PM2.5 mass concentration has reached or exceeded 75 μgm−3 (Wang
et al., 2014a). Four haze episodes were therefore determined during
January 2015, including the episodes from 2nd to 6th (Ep1), 8th to
11th (Ep2), 16th to 18th (Ep3), and 21st to 26th (Ep4) (see Fig. 8), in
which Ep1 and Ep3 were slight haze episodes, while Ep2 and Ep4 were
moderate or heavy haze episodes. We choose Ep2 for a case study be-
cause it is more severe than Ep1 and Ep3, and time series of PM2.5 and
wind fields (see Fig. A2) indicate that Ep2 is mainly caused by local
pollution, with relatively lower wind speeds (1.2 m s−1) and shorter
trajectories of air parcels, while Ep4 is mainly caused by long distance
transportation of air pollutants, with relatively higher wind speeds
(2.2 m s−1) and much longer trajectories of air parcels (see Fig. A3 and
Fig. A4).

Spatial distributions of PM2.5 concentrations during Ep2 from ob-
servations and simulations, and the relative differences of the simula-
tions from two inventories, i.e. (GlobEmission-MEIC)/MEIC×100%),
are shown in Fig. 9. As expected, the mean PM2.5 concentrations during
haze event are 51% higher than the monthly mean (Table 4 and A1),
due to much lower wind speed (1.2 m s−1) which facilitates the rapid
accumulation and increase for air pollutants. The simulations with both
GlobEmission and MEIC overestimate observed PM2.5 concentrations
over YRD (Figs. 9 and 10). The MNB and RMSE of are 61% and
79 μgm−3 in the simulation using MEIC, and 39% and 60 μgm−3 in the
simulation using GlobEmission. Additionally, spatial correlation coef-
ficient in the simulation using GlobEmission increase to 0.69.

As shown in Fig. 11, the NMBs of the simulated PM2.5 are overall
lower in the simulations using GlobEmission than MEIC for most cities
of YRD. For example, the city cluster of Nanjing-Shanghai, where the
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biases are reduced to 25%–33% from 37% to 67% and temporal cor-
relation coefficients are increased to 0.7 from 0.5, in the simulations
using GlobEmission, compared with the simulations using MEIC.

Fig. 12 shows the temporal variations of two major gas precursors
(SO2, NO2) and inorganic components in PM2.5 (sulfate, nitrate) at
Pudong site in Shanghai. It is seen that the simulated SO2 from MEIC
(GlobEmission) is nearly four (two) times as large as observations, and
the biases of simulated sulfate is 32% lower in the simulation with
GlobEmission than with MEIC. The simulated NO2 using MEIC and
GlobEmission is 4.5% and 24.9% lower than observations, respectively.
The simulated nitrates from both emission inventories are all higher
than observations, but the bias with GlobEmission is reduced by 39%.
The overestimation of SO2 and underestimation of sulfate in the si-
mulations imply that the parameterizations of sulfate formation might
be problematic in current model version.

5. Summary and conclusions

To understand the impact of different emission inventories on the
simulated air pollutants, two inventories, MEIC and GlobEmission, re-
presenting the emission inventories based on quite different ways, are
involved in this study. MEIC is based on typical bottom-up approach
while GlobEmission is representative of top-down inventory, in which
the emissions are estimated from satellite retrievals. We first compared
the monthly emissions of SO2 and NOx in two inventories over YRD, and
found that the differences of emissions between two inventories are
quite large. The differences of SO2 in two inventories are dependent on
regional division, i.e. the emission from GlobEmission is 47%, 29%, and
16% lower than MEIC in Shanghai, Anhui province, and Zhejiang
province, respectively. The differences of NOx emissions in two in-
ventories vary in each grid cell due to totally different approaches used
for estimations of emission. The largest NOx difference is found in
Shanghai (45%), followed by Hangzhou (16%) and the lowest in
Nanjing (4%).

A quantitative model evaluation of meteorological fields in three
cities (Shanghai, Nanjing, and Hangzhou) over YRD shows that the
model can capture the temporal variations of surface temperature, re-
lative humidity, precipitation, wind speed and wind direction quite
well. The biases of simulations are overall small, except for wind
speeds, which are overestimated throughout the entire period and may
possibly cause some biases of the simulated air pollutants.

The WRF-Chem model is used to study the impact of discrepancies
in different inventories on simulated air pollutants (SO2, NO2, PM2.5)
during January 2015, and a selected heavy haze event over YRD.
Overall, the simulations of two inventories can both capture the tem-
poral and spatial variation of major air pollutants. Although the simu-
lations of SO2 using GlobEmission reduce MNB and RMSE by more than
80% and 30 μgm−3, respectively, the largest deviations between si-
mulations and observations exist in the city cluster of Nanjing-
Shanghai, where the simulations are nearly four (MEIC) and three times
(GlobEmission) as large as observations, possibly indicating an over-
estimation of SO2 emissions in both inventories, and a difference ex-
isting between the baseline year of inventories and the simulations.
Another possible explanation is that the current model version does not
include heterogeneous sulfate formation, which may underestimate the
conversion rate from SO2 to sulfate. On the contrary, compared with the
simulations by using GlobEmission, the NO2 simulations using MEIC
slightly increase spatial correlation coefficient from 0.43 to 0.49, and
reduce RMSE from 23 μgm−3 to 21 μgm−3. The mean biases using
MEIC are less than 12% in most regions, while the simulations of
GlobEmission are 22% lower than in-situ observations, especially in
Zhejiang province, where the negative biases of simulation are more
than 70%, possibly indicating that GlobEmission underestimates NOx

emissions in this area. The simulated monthly mean PM2.5 are 38%
(MEIC) and 30% (GlobEmission) higher than in-situ observations over
YRD.

A case study during a heavy haze event (8th to 11th in January)
shows that the differences in simulated mean PM2.5 between using two
inventories are 22% (MNB) and 19 μgm−3 (RMSE) over YRD, which
are larger than the monthly mean results (8% for MNB and 6 μgm−3 for
RMSE), indicating importance of choosing emission inventories in si-
mulations of haze pollution. Compared to the simulations with MEIC
inventory, the spatial correlation coefficient between observations and
simulations increase 0.43 to 0.69 over YRD, and temporal correlation
coefficients increase from 0.5 to 0.7 in the city cluster of Nanjing-
Shanghai, by using GlobEmission inventory.
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