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Abstract The dissolved organic carbon in precipitation (water-soluble organic carbon, WSOC) can provide
a carbon subsidy to receiving ecosystems. The concentrations, isotopic signatures (δ13C/Δ14C), and molecular
signatures (transform ion cyclotron mass spectrometry) of WSOC being delivered to Nam Co—a remote
site on the inland Tibetan Plateau (TP)—were compared to those of WSOC in the snowpack, and in wet
deposition from urban cities fringing the TP. The averageWSOC concentration at Nam Co (1.0 ± 0.9 mg C L�1)
was lower than for the large cities (1.6 to 2.3 mg C L�1) but higher than in the snowpack samples
(0.26 ± 0.09 mg C L�1). Based upon radiocarbon data, it is estimated that 15 ± 6% of Nam Co WSOC was fossil
derived, increasing to 20 ± 8% for snowpack WSOC, 29 ± 4% for Lhasa WSOC, and 34 ± 8% for the three cities.
Transform ion cyclotron mass spectrometry results revealed that the abundance of dissolved black carbon
and sulfur-containing molecules of WSOC increased in the order Nam Co < snow pack < urban. The
enrichment in 14C and depletion in dissolved black carbon and sulfurous organic molecules of Nam CoWSOC
was suggestive of low, but still detectable inputs of fossil-derived organics to WSOC on the remote TP.
Backward air mass trajectories for the precipitation events at Nam Co suggested that the fossil fuel
contributions to WSOC in Nam Co region originated mainly from South Asia. This study provides novel
radiocarbon age, chemistry, and source evidence that anthropogenic WSOC is delivered to the remote TP,
one of the most remote regions on Earth.

1. Introduction

The dissolved organic carbon (DOC) delivered to the land in precipitation (water-soluble organic carbon,
WSOC) is derived from many sources including primary emissions, secondary organic aerosols from various
gaseous precursors, and gases (Legrand et al., 2007; May et al., 2013). WSOC has an important influence on
climate and provides a biolabile carbon subsidy to receiving aquatic ecosystems (Mladenov, Alados-
Arboledas, et al., 2011; Mladenov et al., 2008; Mladenov, Sommaruga, et al., 2011; Raymond, 2005; Spencer
et al., 2014; Stubbins et al., 2012; Willey et al., 2000; Yang et al., 2003). The organic carbon stripped from
the atmosphere and deposited as WSOC derives from multiple sources, including biogenic, wildfires, wind-
blown dust, biomass burning, and fossil fuel burning (Hood et al., 2015; Legrand et al., 2013; May et al.,
2013; Willey et al., 2000). At present, the original sources of WSOC remain poorly constrained compared to
other carbonaceous aerosol species (May et al., 2013).

Radiocarbon isotopic composition (Δ14C) provides information about the apparent bulk age of WSOC and
has been used to estimate fossil contributions to WSOC (Avery et al., 2006, 2013; Graven, 2015; Gustafsson
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et al., 2009; May et al., 2013; Raymond, 2005; Zencak et al., 2007). The relative abundance of the natural 13C
isotope (δ13C) provides information about the source and processing of organics (Narukawa et al., 1999). So
far, a number of techniques have been developed for investigating structures of WSOC (Decesari et al., 2000;
Duarte & Duarte, 2011; Duarte et al., 2007). Ultrahigh-resolution Fourier transform ion cyclotron mass
spectrometry (FT-ICR MS) can resolve the molecular formulas present within WSOC (Mopper et al., 2007;
Wozniak, Bauer, Sleighter, & Dickhut, 2008).

The Tibetan Plateau (TP) is one of the highest plateaus and most remote areas in the world. However, it is
bordered by heavily polluted South and East Asia, and pollutants emitted from these two regions can pene-
trate into the TP, influencing its atmosphere (Kang et al., 2016; C. Li, Bosch, et al., 2016; Luthi et al., 2015; Xu
et al., 2013) and producing serious environmental consequences, including a warming atmosphere and gla-
cier retreat (Ji et al., 2015; X. Li, Kang, et al., 2017; Qian et al., 2011; Ramanathan & Carmichael, 2008; Y. Zhang
et al., 2017). A study of glacier ice and glacier-fed streams on the TP inferred that the radiocarbon-depleted
DOC found in these systems is a result of the atmospheric deposition of pre-aged, possibly fossil fuel-derived
organics (Spencer et al., 2014). However, at present, no study has evaluated fossil fuel contributions to WSOC
deposited directly to the TP.

In the current study, we assessed the potential sources of WSOC delivered to the TP for both precipitation and
snowpack samples. Precipitation samples were collected from Nam Co Monitoring and Research Station for
Multisphere Interactions (Nam Co Station), a site on the TP that is remote from industrial regions (Li et al.,
2007; Luthi et al., 2015). WSOC samples from four cities within and around the TP and six snowpack samples
were also collected. Samples were analyzed to determine the concentrations, isotopic values (δ13C/Δ14C), and
molecular signatures (FT-ICR MS) of WSOC. Nam Co precipitation samples were also analyzed for Ca2+, NO�

3 ,
and Na+, and air mass paths were investigated to assist in ascribing potential geographic source regions for
WSOC. The δ13C signatures of river water WSOC and soil organic matter were also determined to assist in con-
straining the potential sources of WSOC at Nam Co.

2. Sampling and Analyses
2.1. Sample Sites

Precipitation samples were collected from Nam Co, Lhasa, Chengdu, Kunming, and Kathmandu (Figure 1).
Both Chengdu and Kunming are typical large Chinese cities. Kathmandu is the capital city of Nepal and
has significant air pollution (P. Chen et al., 2015). Lhasa is the largest and the most popular tourist city of
the Tibet Autonomous Region, China. Although the air quality in Lhasa is considered clean when compared
to other Chinese cities, its atmosphere is being seriously influenced by local emissions (Huang et al., 2010;

Figure 1. Map of the study sites on and around the Tibetan Plateau.

10.1029/2017JD028181Journal of Geophysical Research: Atmospheres

LI ET AL. 6249



C. Li, Bosch, et al., 2016). Nam Co (30°460N, 90°590E, 4,700 m above sea level) is a sparsely populated, remote,
high-elevation region on the TP with minimal local anthropogenic aerosols sources. Its climate can be divided
into nonmonsoon from October to May and monsoon from June to September. Most precipitation occur
during monsoon period (Figure 2). Glaciers cover a large area of the TP and are far from anthropogenic
emission centers (C. Li, Chen, Kang, Yan, Li, et al., 2016).

2.2. Sampling Methods

Sampling for WSOC from precipitation and snowpack samples followed established methods (C. Li, Chen,
Kang, Yan, Li, et al., 2016; C. Li, Yan, Kang, Chen, Hu, et al., 2017; C. Li, Yan, Kang, Chen, Qu, et al., 2016), which
are presented in the supporting information (S1). A total of 29 precipitation samples was collected at Nam Co
from 2013 to 2015. Seven samples were analyzed for WSOC and δ13C/Δ14C, and three via FT-ICR MS. A total of
14 other WSOC samples from four cities located at the fringe of the TP (Kunming, n = 3; Chengdu, n = 3;
Kathmandu, n = 5; Lhasa, n = 3) was analyzed for WSOC and δ13C/Δ14C. Four of these samples were analyzed
via FT-ICR MS (Kunming, n = 2; Chengdu, n = 1; Kathmandu, n = 1; Lhasa, n = 0). Ten snowpack samples were
analyzed for WSOC and δ13C/Δ14C, eight via FT-ICR MS. In addition, δ13C values were determined for 14 sur-
face soil organic matter samples of the TP based on the protocol from Lu et al. (2004).

2.3. WSOC and Ion Concentrations

WSOC samples were filtered through prebaked glass filters (Whatman GF/F, pore size 0.7 μm, diameter
47 mm) to remove particles. WSOC was quantified using a high-temperature oxidation method (TOC-
5000A; Shimadzu Corp, Kyoto, Japan; Stubbins & Dittmar, 2012). WSOC concentrations of the process blanks
(0.04 ± 0.02 mg C L�1, n = 8) were similar to our previous results (F. Yan et al., 2016) and much lower than
those of samples. Ca2+, NO�

3 , and Na+ were measured by ion chromatography (Dionex ISC 2000/2500,
United States; Li et al., 2007). The average blank concentrations of measured ions were low of less than
1 ng/g. All the reported concentrations were subtracted by those of the blanks.

2.4. WSOC Isotopic Analysis

For δ13C/Δ14C analysis, WSOC samples were shipped frozen to the United States, oxidized to CO2 using
ultraviolet light and purified at the Yale School of Forestry and Environmental Studies following published
methods (Raymond et al., 2004, 2007). Briefly, for samples containing more than 60 μg C, sample was poured
into precleaned quartz tubes, acidified to pH 2 with phosphoric acid, and sparged with ultrahigh purity
helium to remove inorganic carbon. Next, the sample was irradiated using a high-energy ultraviolet lamp

Figure 2. Seasonal variations in precipitation and water-soluble organic carbon (WSOC) at Nam Co station from 2013
to 2015.
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for 5 hr to quantitatively oxidize WSOC to CO2. Concentrations of WSOC were determined using a calibrated
Baratron absolute pressure gauge (MKS Industries). WSOC concentrations determined agree well with those
determined using the Shimadzu TOC analyzer described above (r2 = 0.99, slope = 1.03; Figure S1) and as
previously reported in this laboratory (Raymond et al., 2007). CO2 was cryogenically purified by liquid nitro-
gen on a vacuum extraction line and sent to the National Ocean Sciences Accelerator Mass Spectrometry at
Woods Hole for isotopic analysis. Recoveries and blanks were assessed periodically by oxidizing a dissolved
organic standard (oxalic acid) using the same procedure as for samples.Δ14C of the standard agreed well with
reference values. CO2 produced for the procedural blanks was insufficient for radiocarbon analyses. A binary
mixing model was used to obtain fractional contributions of contemporary biogenic (fbiogenic) and fossil
(ffossil = 1 � fbiogenic) derived organics to the WSOC of the measured samples (Kirillova et al., 2013). This mix-
ing model is described further in the supporting information (Text S3).

2.5. Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

In order to concentrate and purify WSOC for FT-ICRMS analysis, samples were solid phase extracted using PPL
Bond Elut (Agilent) resins. Samples were acidified to pH 2 using ultrapure hydrochloric acid and solid phase
extracted following themethod of Dittmar et al. (2008). Themethanol extracts were diluted 1:1 with ultrapure
water and analyzed in negative mode electrospray ionization using a 15 Tesla FT-ICR MS (Bruker Solarix) at
the University of Oldenburg, Germany. Five hundred broadband scans were accumulated for the mass spec-
tra. After internal calibration, mass accuracies were within an error of <0.2 ppm. Molecular formulas were
assigned to peaks with signal-to-noise ratios greater than 5 based on published rules (Koch et al., 2007;
Singer et al., 2012; Stubbins et al., 2010). Peaks detected in the procedural blank (PPL extracted ultrapure
water) were removed. Peak detection limits were standardized between samples by adjusting the dynamic
range of each sample to that of the sample with the lowest dynamic range (dynamic range = average of
the largest 20% of peaks assigned a formula divided by the signal-to-noise threshold intensity; standardized
detection limit = average of largest 20% of peaks assigned a formula within a sample divided by the lowest
dynamic range within the sample set; Spencer et al., 2014; Stubbins et al., 2014). Peaks below the standar-
dized detection limit were removed to prevent false negatives for the occurrence of a formula within samples
with low dynamic range.

Assigned formulas were categorized by compound class based upon elemental stoichiometries (Stubbins
et al., 2010). Modified aromaticity index (AImod) (Koch & Dittmar, 2006) values were calculated:

AImod ¼ 1þ C–0:5O–S–0:5Hð Þ= C–0:5O–S–N–Pð Þ (1)

Formulas with AImod values from 0.5 to 0.67 were assigned as aromatic, and formulas with AImod greater
than 0.67 were assigned as dissolved black carbon (Koch & Dittmar, 2006). As such, the term dissolved
black carbon is used here to denote soluble forms of combustion-derived condensed aromatic compounds
(Kim et al., 2004; Stubbins et al., 2010). The further compound classes were defined as follows: highly
unsaturated = AImod <0.5, H/C < 1.5; aliphatics = H/C 1.5 to 2.0, O/C < 0.9, N = 0; peptide molecular
formulas = H/C 1.5 to 2.0, O/C < 0.9, and N > 0. It should be noted that compounds identified as “peptides”
have the molecular formulas of peptides, but their actual structure may differ. Elemental formulas were also
grouped by elemental composition (i.e., without N, S, or P = CHO only; with S, with N, and with P).

2.6. Air Mass Trajectories

In order to investigate air mass source for a given precipitation event over Nam Co, 5-day backward trajec-
tories (100, 500, and 1,000 m above ground level, AGL) were achieved using the Hybrid Single-Particle
Lagrangian Integrated Trajectory 4 model developed by National Oceanic and Atmospheric Administration
(http://www.arl.noaa.gov/ready/hysplit4.html; Rolph, 2015).

3. Results
3.1. Calcium and Nitrate

Ca2+ in Nam Co precipitation ranged from 3 to 4,990 μg/L. NO�
3 in Nam Co precipitation ranged from 72 to

1,860 μg/L (Table S1).
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3.2. WSOC Concentration

The snowpack samples had the lowest average WSOC concentration (0.26 ± 0.09 mg C L�1). The mean con-
centration of WSOC at Nam Co (1.0 ± 0.9 mg C L�1) was lower than the three other cities (1.6 to 2.3 mg C L�1;
Figure S2a and Table 1).

3.3. Isotopic Signatures of WSOC

δ13C values (Figure S2b and Table 1) of snowpack WSOC (�21 ± 3‰) and Nam Co WSOC (�21 ± 3‰) were
variable and enriched compared to WSOC from Lhasa (�25 ± 3‰) and other cities (�24 to �26‰). δ13C
values for WSOC of Nam Co and snowpack were also enriched relative to soil organic carbon
(δ13C = �25.4 ± 0.6‰) and river water WSOC (δ13C = �25.6 ± 1.24 ‰) from the TP (Figure 3 and Table S3).

Nam Co WSOC (1080 ± 530 years before present, ybp) and snowpack WSOC (1300 ± 570 ybp) samples had
the youngest apparent radiocarbon ages (Figure S2c and Table 1). WSOC from the three large cities fringing
the TP was most depleted in 14C resulting in the oldest average apparent radiocarbon ages (2200 to
2600 ybp). Lhasa WSOC was of intermediate radiocarbon age (1750 ± 460 ybp).

3.4. Molecular Signatures of Snowpack and WSOC

Molecular formulas covered a wide range of H/C and O/C values (Figure 4) and molecular classes (Tables 1
and S4). Nam Co WSOC was depleted in dissolved black carbon and sulfur-containing formulas relative to
WSOC from the cities and snowpack (Figures S2d, S2e, and 4 and Tables 1 and S4). WSOC from the large cities
had the highest and most variable proportions of dissolved black carbon and sulfur-containing formulas
(Figures S2d, S2e, and 4 and Tables 1 and S4).

4. Discussion
4.1. Concentrations of WSOC

WSOC concentrations in samples collected at the large cities were highly
variable and elevated compared to Lhasa and Nam Co WSOC (C. Li, Yan,
Kang, Chen, Hu, et al., 2017; C. Li, Yan, Kang, Chen, Qu, et al., 2016;
Figure S2a and Table 1). High city WSOC concentrations were compar-
able to WSOC concentrations for samples collected in other large
Asian cities such as Beijing, China (3.50 mg C L�1; Pan et al., 2010) and
Seoul, South Korea (1.13 mg C L�1; G. Yan & Kim, 2012). Average
concentrations of Nam Co WSOC were lower than urban WSOC
concentrations but higher than snowpack WSOC concentrations
(Table 1 and Figure S2a). The low concentrations of snowpack WSOC
on the TP are in agreement with previous studies in Alaska (Fellman
et al., 2015), Antarctica (Antony et al., 2014; Barker et al., 2013), the
European Alps (Legrand et al., 2013), and Greenland (Grannas et al.,
2004; Twickler et al., 1986). Given the photolability (Grannas et al.,
2004) and biolability (Hood et al., 2009; Spencer et al., 2014) of WSOC

Table 1
Average WSOC Concentrations, δ13C Signatures, Fossil Contribution (ffossil), and Apparent Age (14C Age) in ybp, and
Percentage DBC and Sulfurous (With Sulfur) Compounds Based Upon Fourier Transform Ion Cyclotron Resonance Mass
Spectrometry Data for Snowpack and WSOC Samples

Sampling site WSOC (mg C L�1) δ13C (‰) ffossil (%) 14C age (ybp) DBC (%) Sulfur (%)

Snowpack 0.26 ± 0.09 �21 ± 3 20 ± 8 1300 ± 570 1.7 ± 0.6 13 ± 8
Nam Co 1.0 ± 0.9 �21 ± 3 15 ± 6 1080 ± 530 0.6 ± 0.5 3 ± 2
Lhasa 1.0 ± 0.4 �25 ± 2 29 ± 4 1750 ± 460 N.D. N.D.
Chengdu 2.3 ± 0.4 �24.2 ± 0.2 33 ± 9 2300 ± 1100 2.6 ± 0.6 31 ± 13
Kunming 1.6 ± 1.2 �26 ± 2.0 36 ± 10 2600 ± 1200 3.9 ± 0.6 35 ± 29
Kathmandu 1.7 ± 1.2 �25.2 ± 0.8 33 ± 9 2200 ± 1100 1.7 3.9

Note. WSOC = water-soluble organic carbon; ybp = years before present; DBC = dissolved black carbon; N.D. = no data.

Figure 3. δ13C of Nam Co water-soluble organic carbon (WSOC), organic car-
bon from the surface soil, and river water WSOC from the Tibetan Plateau.
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found in accumulating snow and exported from glaciers, it is likely that a fraction of WSOC is lost to biode-
gradation or photodegradation once deposited as snow and this results in WSOC concentrations being lower
in snowpacks than in the precipitation that forms snowpacks.

4.2. Sources of WSOC

The WSOC samples from Lhasa and the three large cities were depleted in 14C, equating to older apparent
ages, relative to WSOC at Nam Co, the remote site on the TP (Figure S2c and Table 1). The FT-ICR MS data also
showed the WSOC samples from the large cities to be enriched in dissolved black carbon and sulfurous
compounds relative to Nam Co WSOC (Figures S2d and S2e and Table 1). Dissolved black carbon and sulfur-
ous compounds are both molecular signatures associated with combustion products (Wozniak, Bauer,
Sleighter, Dickhut, &, Hatcher, 2008). Therefore, the depletion in 14C and enrichment in dissolved black car-
bon and sulfurous compounds in WSOC from the large cities suggests that urban precipitation is enriched
in WSOC due to the high level of anthropogenic emissions and associated fossil fuel combustion in these
regions (B. Chen et al., 2013; Y.-L. Zhang, Huang, et al., 2015). Based upon a binary isotopic mass balance per-
centage contribution of fossil fuel-derived organics to total WSOC was 29 ± 4% at Lhasa, increasing for the
three large cities (Kunming = 36 ± 10%; Chengdu = 34 ± 9%; Kathmandu = 33 ± 10%; Table 1). These values
are comparable to those for WSOC samples from an urban area in North America (27 ± 20%; Raymond, 2005)
and slightly higher than that of WSOC of near-surface aerosols in western India (23 ± 4%; Kirillova et al., 2013).

Nam CoWSOCwas enriched in 14C and depleted in dissolved black carbon and sulfurous compounds relative
to the urban sites (Figure S2 and Table 1), suggesting that the low concentration of WSOC at Nam Co reflects
the weaker influence of human activity at this high-elevation, remote region (Li et al., 2007). Despite the lower
apparent input of anthropogenic carbon in NamCoWSOC, ffossil of Nam CoWSOC samples averaged 15 ± 6%,
indicating that around one seventh of WSOC in this remote region could be derived from fossil fuel combus-
tion. As there are no to minimal fossil fuel combustion emissions at Nam Co, this fossil fuel-derived organic
carbon would have to originate from emission sites distant from Nam Co. Additional data and discussion is
presented below to further qualify the assumption that the 14C depleted component of Nam Co WSOC
was derived from distant fossil fuel combustion.

Surface soils may contain aged organic carbon, which can be entrained into the atmosphere as dust and
incorporated into WSOC. Therefore, dust from local soils on the TP could contribute 14C depleted carbon
to Nam Co WSOC. Ca2+ and NO�

3 in precipitation at Nam Co derive from soil/dust and combustion, respec-
tively (Li et al., 2007; Liu et al., 2015). Nam Co WSOC concentrations correlated linearly with NO�

3 concentra-
tions (R2 = 0.79; p < 0.0001; n = 27), but not non-sea-salt Ca2+ (Drever, 1982; R2 = 0.03; p = 0.37; n = 27;
Figure S3; Pulido-Villena et al., 2006). These trends in WSOC, NO�

3 and non-sea-salt Ca2+ suggest that
WSOC at Nam Co is mainly derived from combustion, not soils (C. Li, Yan, Kang, Chen, Hu, et al., 2017). It needs
to point out that WSOC of those precipitation samples with abnormally high Ca2+ was mainly influenced by
dust. Although Ca2+ is mainly contributed from dust (Morales-Baquero et al., 2013; Pulido-Villena et al., 2006)

Figure 4. Van Krevelen diagrams displaying the average molecular properties of water-soluble organic carbon for samples
collected from Nam Co and the large cities. DBC = dissolved black carbon; S = sulfur.
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and the Taklimakan Desert is located at the north side of study area, it is local sourced dust of the TP that
mainly influence Ca2+ in precipitation at Nam Co station (Li et al., 2012).

In addition, the δ13C signature of organic carbon also provides evidence about its source. The δ13C of organic
carbon in soil samples collected from the TP was �25.4 ± 0.6‰ (Table S3), similar to those of DOC from
Tibetan river water (�25.1–25.8‰; Qu et al., 2017) and depleted relative to NamCoWSOC (δ13C =�21 ± 3‰;
Table 1), providing further evidence that Nam Co WSOC was not derived from local soils. Enrichment of
organic carbon in 13C can occur in the atmosphere due to both aging processes (Narukawa et al., 1999)
and photochemical reactions (Miller & Zepp, 1995; Mladenov, Alados-Arboledas, et al., 2011) altering the ori-
ginal source δ13C signature of organic carbon. Nam Co WSOC enriched in 13C compared to urban WSOC
(Table 1), implying Nam Co WSOC is either derived from a 13C enriched organic carbon source or has experi-
enced considerable aging during atmospheric transport. As the time available for aging increases with the

Figure 5. Hybrid Single-Particle Lagrangian Integrated Trajectory model backward air mass trajectories and fossil
combustion contribution for the (a–d) four typical precipitation events at Nam Co. AGL = above ground level (http://
www.arl.noaa.gov/ready/hysplit4.html).
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distance an air mass travels, the latter would suggest that the organic carbon deposited at Nam Co is sourced
in regions distant from the TP.

4.3. Source Regions of Fossil Fuel Combustion-Derived WSOC to Nam Co

The WSOC, Ca2+, NO�
3 , δ

13C, and radiocarbon data above imply that Nam Co WSOC is influenced by distant,
fossil fuel combustion sources. The geographical source of fossil carbon to WSOC at Nam Co was assessed
by back trajectory analysis (Rolph, 2015). This method has been used to determine air mass sources and
their influence on aerosols and precipitation on the TP, showing that pollutants were mainly transported
from South Asia (C. Li, Bosch, et al., 2016; Liu et al., 2015). In the current study, we further determined the
sources of the air masses that corresponded to the seven Nam Co precipitation events for which Δ14C-
WSOC was determined.

Among the seven precipitation events, WSOC ffossil was the lowest on 8 September 2013 (5%; Table 1). The
low-level (500 m AGL) air mass for this precipitation event was transported exclusively from the western
TP, a region with few residents and minimal fossil combustion (Figure 5a). Correspondingly, air masses at
other altitudes (100 and 1,000 m AGL) derived from the distant Middle East, presumably leading to inefficient
transport of pollutants because of long distance transport. Therefore, WSOC for this precipitation event was
presumably predominantly sourced from biogenic and biomass burning derived components produced on
the TP.

The precipitation events with older WSOC at Nam Co occurred when air masses were transported from South
Asia (Figures 5b and 5d). WSOC collected from events during the monsoon (17 July and 6 August 2013) may
have been affected by emissions from Lhasa given that low altitude air masses passed over Lhasa before
reaching Nam Co (Figures 5b and 5c). Lhasa is the largest city on the TP and only around 150 km from
Nam Co (Figure 1). Contribution of fossil fuel combustion to black carbon of Lhasa’s atmosphere can be as
high as that of Beijing (C. Li, Chen, Kang, Yan, Hu, et al., 2016), resulting in air pollution that influences the
Δ14C of WSOC in local precipitation (C. Li, Yan, Kang, Chen, Qu, et al., 2016).

Air masses associated with the four precipitation events with radiocarbon-depleted WSOC during the
non-monsoon period were also transported from South Asia (Figure S4). Although westerlies dominate the
TP during nonmonsoon period, air masses derived from South Asia can penetrate into the TP occasionally,
especially in April and May before the outbreak of the Indian monsoon (Luthi et al., 2015). These air mass tra-
jectories are normally wet, warm, and more likely to lead to precipitation than the more common westerlies.
For instance, most precipitation events at Nam Co during 2011–2012 were seeded by air masses transported
from South Asia (Liu et al., 2015). Therefore, both the incidence of precipitation events and the delivery of
fossil fuel-derived organics to the TP are greater when air masses are sourced over South Asia, making these
events the main drivers of annual fossil fuel-derived WSOC fluxes to Nam Co. Conversely, air masses asso-
ciated with westerlies result in lower fossil fuel contributions to WSOC within any precipitation that does
occur. Only one precipitation seeded by an air mass transported by westerly winds was captured. More pre-
cipitation events should be studied in the future to better test the above conclusions. Nevertheless, the air
masses of the other six Nam Co precipitation events derived from South Asia provide strong evidence that
fossil fuel combustion-derived organics from South Asia are transported into the TP during both monsoon
and nonmonsoon periods.

5. Conclusions

Carbon isotopic compositions of WSOC at Nam Co, a typical remote area of the TP, supplemented with FT-ICR
MS, major ions, and air mass trajectory data, indicate that long-range transport of fossil fuel combustion
sourced organic carbon influence the quantity of WSOC delivered to Nam Co. Previous studies on the TP also
support this conclusion based upon Community Atmosphere Model (R. Zhang, Wang, et al., 2015) and Δ14C
of black carbon (C. Li, Bosch, et al., 2016). This study further shows that about 15% of the WSOC at Nam Co
region and glacier regions comes from fossil fuel combustion. Correspondingly, the other WSOC are derived
frommultiple modern sources such as biomass mass burning, various gaseous precursors, and organic gases.
The exact sources need to be further investigated in the future.

The fossil signal of WSOC in rain and snow falling onto the remote TP, the rooftop of the world, demonstrates
the far-reaching consequences of industrial activity and the interconnectivity of the global anthropogenic
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and natural biogeochemical cycles. The WSOC deposited to glacier ecosystems in Alaska and on the TP has
been shown to be both biolabile and contains significant inputs from fossil fuel combustion-derived carbon
(Spencer et al., 2014; Stubbins et al., 2012). Although the biolability of WSOC delivered to the TP has yet to be
directly addressed, it may also be biolabile. Thus, the atmospheric chemistry, rain and snow water chemistry,
and the functioning of snow and ice covered ecosystems on the remote TP are likely being modified by long-
range transport and deposition of anthropogenic organic carbon.
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