Characteristics and origins of air pollutants and carbonaceous aerosols during wintertime haze episodes at a rural site in the Yangtze River Delta, China

Mengying Baoa, b, c, d, Fang Caoa, b, c, d, Yunhua Changa, b, c, d, Yan-Lin Zhanga, b, c, d, *, Yaqi Gaoa, b, c, d, Xiaoyan Liua, b, c, d, Yuanyuan Zhanga, b, c, d, Wendi Zhanga, b, c, d, Tianran Tanga, b, c, d, Zufei Xua, b, c, d, Shoudong Liua, b, c, d, Xuhui Leea, b, c, d, Jun Li, Gan Zhange

* Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Nanjing 210044, China
b Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing 210044, China
c Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing 210044, China
d Yale-NUIST Center on Atmospheric Environment, Nanjing University of Information Science and Technology, Nanjing 210044, China
e State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

Abstract

China has frequently suffered regional-scale haze pollution in recent years. In this study, real-time observation data such as PM_{2.5}, PM_{10}, SO_{2}, NO_{2}, CO and O_{3} were used to analyze wintertime haze events at a rural site (Dongshan) in the Yangtze River Delta (YRD). 3-hour resolution organic carbon (OC) and elemental carbon (EC) were also measured to further investigate the sources of PM_{2.5}. The hybrid receptor models were used to identify source regions of PM_{2.5}. The results showed that both regional transport and local emissions significantly contribute to air pollution at Dongshan during haze periods. The source areas affecting high PM_{2.5} concentrations were mainly located in nearby urbanized provinces (i.e., Jiangsu, Anhui and Zhejiang) and industrial provinces (i.e., Shandong and Hebei) in eastern China. Furthermore, open biomass-burning emissions in south China (i.e., Jiangxi, Hunan, Guangdong and Fujian) decreased regional air quality, which was supported by MODIS fire spots and receptor models. During clean periods, air masses were originated from remote regions such as Mongolia and oceanic areas (i.e., the Yellow Sea and the East Sea). Enhanced secondary organic carbon (SOC) formation was found under long-range transport when OC aging was favorable. Contrarily, relatively low SOC formation was found when the site was dominated by local emissions. In addition to local emissions, high PM_{2.5} concentrations at Dongshan were apparently affected by either regional or long-range transport, which were characterized by relatively low and high wind speeds, respectively. It is necessary to implement the emission control strategies for the industrial and urbanized areas.

1. Introduction

Due to the rapid economic growth and urbanization over the last few decades in China, air pollution and heavy haze have become a serious environmental issue and led to a global concern (Yu, 2014; Chan and Yao, 2008). Haze is defined as a weather phenomenon with low atmospheric visibility (less than 10 km) under the conditions of 80% relative humidity (Yu et al., 2014). Previous studies have shown that anthropogenic emissions and meteorological conditions are the two most important factors causing extreme haze pollution (Xu et al., 2015; Zhang et al., 2015a). Fine aerosols (particulate matter with aerodynamic diameters equivalent to or less than 2.5 μm; PM_{2.5}) have been reported to be an important determinant for the formation of regional haze events (Wang et al., 2014a; Yang et al., 2011; Cao et al., 2012). Gaseous species such as NO_{2}, SO_{2} as well as volatile organic compounds can
react in the atmosphere and produce secondary PM pollution (Chang et al., 2011; Huang et al., 2014; Yu et al., 2007). High occurrence of haze has important impacts on visibility, air quality, climate change and human health (Yu et al., 2013, 2001, 2010; Chen et al., 2013). Coal combustion, biomass burning, traffic and industrial emissions are the main contributors of extreme haze pollution in China (Adame et al., 2012; Zhang et al., 2015c, 2015d; Cao et al., 2015).

Carbonaceous species, as significant chemical components of PM$_{2.5}$, have also been found to be widely associated with global radiative transfer, health problems and visibility deterioration (Ramanathan et al., 2007; McConnell et al., 2007; Cao et al., 2005). Carbonaceous aerosol is usually divided into organic carbon (OC) and elemental carbon (EC) fractions. EC is mainly emitted from fossil fuel and biomass combustion, and is of special interest because it could cause positive radiative forcing and was found to be the second most important factor of global warming behind CO$_2$ (Jacobson, 2001). OC originates both from direct emissions as primary organic carbon (POC) and gas-to-particle conversion as secondary organic carbon (SOC) and can cause negative forcing due to its scattering of sunlight (Cao et al., 2007; McConnell et al., 2007; Kaiser and Yun, 2002). The knowledge on carbonaceous aerosols is important for understanding the impacts of emissions on regional air quality and climate change.

There have been a large number of studies focusing on the physical and chemical characteristics (Yu and Zhang, 2011), formation mechanisms (Yu et al., 2008; Wang et al., 2014c; Guo et al., 2014; Yang et al., 2005), climate effect (Yu et al., 2013; Ramanathan et al., 2007) and source apportionments (Zhang et al., 2015c) of aerosol particles in China, especially in the high-populated city clusters such as the Beijing-Tianjin-Hebei (BTH) regions, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) (Wang, 2015; Cao et al., 2013; Tan et al., 2009). For example, Zhang and Cao (2015) investigated the spatial and seasonal distribution of PM$_{2.5}$ in 190 cities of China and found that high PM$_{2.5}$ level appears in the spring of the Northwest and West Central China, and autumn of the East China. The PM$_{2.5}$ concentrations were also found closely associated with variations of the boundary layer depth and human activities. Zhang et al. (2007a) investigated the characteristics of carbonaceous species in PM$_{10}$ and trace gases in winter in Beijing and found strong correlation between OC, EC, and PM$_{10}$. SO$_2$ and CO, indicating the similar source of them. Vehicle emission with low OC/EC ratio and coal combustion with high OC/EC ratio were the main sources for carbonaceous aerosols in winter in Beijing. Wang et al. (2015) discussed possible causes of a severe haze episode in the Yangtze River Delta. It was found that meteorological conditions played a very important role in the formation of haze. Strong relationship between PM$_{10}$, PM$_{2.5}$, SO$_2$, NO$_2$ and CO was found, indicating the great contributors of vehicular emissions and biomass burning for the haze episode. Most of these studies reported air pollution on the regional or national scale; however, only a few studies have been conducted at rural sites in China, especially on the transport characteristics of air pollutants between rural sites and surrounding urban areas.

Air pollution is not only a local but also a regional or even a global-scale problem (Wang et al., 2010). Some air pollutants can be transported over hundreds of or even thousands of kilometers. (Bergin et al., 2005). Back trajectory and cluster analysis as well as hybrid receptor models such as the potential source contribution function (PSCF) and the concentration weighted trajectory (CWT) methods have been widely used to assess the transport pathways and the source regions of air pollutants (Yu et al., 2014; Zhang et al., 2014, 2015b; Yan et al., 2015; Sadys et al., 2014). For example, Yu et al. (2014) reported that the major contributions to air pollutants in Hangzhou were from the southeastern sources based on the back trajectories and receptor model analysis. Karaca et al. (2009) evaluated long-range source contributions to the PM$_{10}$ profile of Istanbul, Turkey in 2008. Their results showed that air masses arriving at Istanbul were seasonally dependent and the potential source region of PM$_{10}$ in Istanbul included Europe, Asia and the Mediterranean region. Kim et al. (2009) investigated transport patterns of air pollution in Korea and found that long-range or regional transport between heavily polluted urban and rural area can significantly affect the air pollution level in rural sites.

In this study we analyzed 6 major air pollutants (i.e., PM$_{2.5}$, PM$_{10}$, CO, SO$_2$, NO$_2$ and O$_3$) and carbonaceous species (i.e., OC and EC) in PM$_{2.5}$ from January 15 to 28, 2015, at Dongshan. The objectives of this study are 1) to investigate the temporal variations and characteristics of major air pollutants and the carbonaceous components in PM$_{2.5}$ during wintertime haze events; 2) to evaluate the impact of local and regional transport sources on the formation of haze episodes in Dongshan using the air mass back trajectory and hybrid receptor models (PSCF and CWT).

2. Measurement and methods

2.1. Sampling site and observational data

Our measurement site Dongshan (31.04°N, 120.26°E) is located on the southeast bank of the Taihu Lake in eastern China, a rural area of Suzhou, which is the fifth largest city in the Yangtze River Delta (YRD) region (see Fig. 1). Dongshan has an eastern Asian monsoon climate accompanying seasonally changing prevailing winds which is warm and humid with four clear seasons. Due to its unique topography and humid climate, Dongshan is very sensitive to regional transport of air masses from its surrounding industrial areas and population centers. Hourly mass concentrations of PM$_{2.5}$ and PM$_{10}$ were determined by the β-Ray method (BAM-1020, MetOne, America) at the Dongshan Automatic Meteorological Station (DAMS). Meanwhile, real-time hourly concentrations of gaseous species including SO$_2$, NO$_2$, CO and O$_3$ were measured using the ultraviolet fluorescence method, the chemiluminescence method, the gas filter correlation analysis method and the ultraviolet photometric method (EC9800 series, Ecotech, Australia), respectively. The instrumental operation maintenance, data assurance and quality control were performed according to the Chinese Ministry of Environmental Protection Standards for PM$_{10}$, PM$_{2.5}$ (MEP, 2013a) and for SO$_2$, NO$_2$, O$_3$ and CO (MEP, 2013b) (Zhang and Cao, 2015). The wind speed data were obtained from the DAMS.

2.2. Filter-based PM$_{2.5}$ sampling

The 3-h PM$_{2.5}$ samples were collected on prebaked quartz fiber filters (QFF, PALL, America) with 8 × 10 inches by a high volume air sampler (KC-1000, Laoshan, China) at a flow rate of 1.05 m3 min$^{-1}$ in the DAMS (31.04°N, 120.26°E) from January 15 to 28, 2015. A total of 99 samples were collected including two filter bank filters collected following 10 min exposures to ambient air without active sampling.

All QFFs were pre-baked at 450 °C for 6 h before sampling to remove carbon contaminations. Before and after sampling, all QFFs were weighed by electronic balance (Sartorius, 0.1 mg, Germany). To avoid the errors introduces by variations of room temperature and relative humidity, the filters were equilibrated at 25 ± 0.5 °C and 50 ± 5% relative humidity for 72 h before being weighed. After weighting, the filters were wrapped in aluminum foils, packed in sealable bags and stored at −20 °C for further analysis. All procedures during sampling and analysis were strictly quality
controlled to avoid any potential contamination.

2.3. Chemical analysis

The PM$_{2.5}$ samples were analyzed for OC and EC using a Desert Research Institute (DRI) Model 2001 Thermal Optical Carbon Analyzer (Atmoslytic Inc., Calabasas, USA). A 0.526 cm2 punch from each QFF was analyzed following the IMPROVE thermal optical reflectance (TOR) protocol (Cao et al., 2007). For quality control, replicate analyses of 10% of the total samples yielded differences of less than 8% for OC and 10% for EC. The sample results were corrected by the blank values.

2.4. Back trajectories analysis

To evaluate the air mass origins of PM$_{2.5}$, 48-h back trajectories at Dongshan (31.04°N, 120.26°E) were calculated 8 times a day (0:00, 3:00, 6:00, 9:00, 12:00, 15:00, 18:00, 21:00 UTC) by using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT4.8) model, provided by the National Oceanic and Atmospheric Administration (NOAA) (NOAA/ARL, 2007; Draxler and Hess, 1998). In order to investigate the behavior of the air masses circulation in the planetary boundary layer (PBL), these trajectories have been calculated to 500 m corresponding to the upper middle height of the PBL, representing well-mixed convective boundary layer for regional transport investigation (Xu and Akhtar, 2010). The National Center for Environmental Prediction Global Data Assimilation System (NCEP GDAS) data obtained from NOAA (GDAS, 2007) with a spatial resolution of 1° × 1° and 24 levels of vertical resolution were used as meteorological data input to the model.

2.5. PSCF and CWT models

The PSCF model can be used to localize the potential sources of aerosols at the receptor site (Hoh and Hites, 2004). For PSCF modeling, the region was divided into 0.5° × 0.5° grid. The PSCF value for a single grid cell is calculated by counting each trajectory segment endpoint that terminates within that grid cell (Ashbaugh et al., 1985) as follows:

$$PSCF_{ij} = \frac{m_{ij}}{n_{ij}}W_{ij}$$

(1)

where m_{ij} is the number of back-trajectory endpoints at the grid cell (i,j) corresponding to the measured concentrations of air pollutants higher than a given criterion value, which is set to the mean air pollutants concentrations during the haze pollution in this study. n_{ij} is the total number of endpoints falling in the grid cell. W_{ij} is an empirical weight function proposed by Zeng and Hopke (1989) to reduce the uncertainties of small n_{ij} on the PSCF values:

$$W_{ij} = \begin{cases} 1.0 & n_{ij} > 2Avg \\ 0.75 & Avg < n_{ij} < 2Avg \\ 0.5 & 0.5Avg < n_{ij} < Avg \\ 0.15 & 0 < n_{ij} < 0.5Avg \end{cases}$$

(2)

where Avg is the average number of trajectory segment endpoints in all cells.

The higher the PSCF value is, the higher possibility the areas have potential source of aerosols at the receptor site. It’s difficult to separate moderate sources from strong ones for PSCF method because when pollutant concentrations are only slightly higher or extremely higher than the criterion, the grid cells will have the same PSCF value. To overcome the limitation, the CWT method was used to calculate the trajectory weighted concentration C_i as follows (Hsu et al., 2003):

$$C_i = \frac{\sum_{l=1}^{M} C_l T_{ijl} W_{ij}}{\sum_{l=1}^{M} T_{ijl}}$$

(3)

where I is the index of the trajectory, M is the total number of trajectories, C_l is the concentration measured on arrival of trajectory l, and T_{ijl} is the time spent in the grid cell (i,j) by trajectory l. The higher the C_i value is, the higher potential contributions to the high pollutant concentrations at the receptor site.

The trajectory cluster and receptor model analysis together with the geographic information system (GIS) visualization was performed with the software TrajStat (Wang et al., 2009). The TrajStat software
can identify the transport pathways and source regions by providing an integrated GIS interface to query, view and analyze trajectories and the corresponding measurement data at the receptor site.

3. Results and discussion

3.1. Characteristics of air pollutants and carbonaceous aerosols

3.1.1. Concentrations of major air pollutants

Concentrations of air pollutants (PM$_{2.5}$, PM$_{10}$, O$_3$, CO, SO$_2$ and NO$_2$) and PM$_{2.5}$/PM$_{10}$ ratio during January 15 to 28, 2015, at Dongshan are summarized in Table 1. The average concentrations of PM$_{2.5}$ and PM$_{10}$ were 61.5 μg m$^{-3}$ and 98.2 μg m$^{-3}$ with the highest concentrations of 177.1 μg m$^{-3}$ and 285.0 μg m$^{-3}$, respectively, which were 2.4 and 1.9 times of the corresponding Chinese National Ambient Air Quality Standards (NAAQS) of 75 μg m$^{-3}$ and 150 μg m$^{-3}$, respectively (GB3095-2012). High concentrations of PM$_{2.5}$ and PM$_{10}$ were observed at this rural area. The variation ranges of SO$_2$, NO$_3$, O$_3$ and CO concentrations were 5.4–186.0 μg m$^{-3}$, 12.2–238.8 μg m$^{-3}$, 10.7–129.7 μg m$^{-3}$ and 0.1–3.1 mg m$^{-3}$, respectively, much lower than the hourly NAAQS for SO$_2$ (500 μg m$^{-3}$), NO$_3$ and O$_3$ (200 μg m$^{-3}$) and CO (10 mg m$^{-3}$), respectively. Compared with the data derived from the National Environment Monitoring Station, the air pollution level of Dongshan was relatively lower than the nearby high-populated cities such as Suzhou (PM$_{2.5}$, 101.9 μg m$^{-3}$; PM$_{10}$, 118.0 μg m$^{-3}$), Nanjing (PM$_{2.5}$, 110.8 μg m$^{-3}$; PM$_{10}$, 168.4 μg m$^{-3}$) and Wuxi (PM$_{2.5}$, 106.8 μg m$^{-3}$; PM$_{10}$, 152.2 μg m$^{-3}$), during the studied period. The mean PM$_{2.5}$/PM$_{10}$ was 62.8% with a range from 30.0% to 93.4%, indicating that fine particulate matter was a major fraction of PM$_{10}$.

The average mass concentrations of OC and EC were 17.4 μg m$^{-3}$ and 4.9 μg m$^{-3}$, with the range of 2.0–45.4 μg m$^{-3}$ and 0.3–19.8 μg m$^{-3}$, respectively (see Table 1). The total carbon (TC = OC + EC) accounted for 16.5% of the PM$_{2.5}$ concentration, with OC and EC accounted for 13.1% and 3.4%, respectively, indicating that carbonaceous aerosols were one of the key components of fine particles in Dongshan. In addition, Strong correlations (r) of 0.79 between TC and PM$_{2.5}$ mass concentrations was observed in Dongshan, implying TC and PM$_{2.5}$ have similar sources and formation processes.

3.1.2. Temporal variation of major air pollutants

Fig. 2 shows the time series of concentrations of six gaseous pollutants and carbonaceous aerosols during the period from January 15 to 28, 2015, at Dongshan. A cold front from north has passed through Dongshan and brought a rainfall before January 15. Due to the wet scavenging effect, the concentrations of air pollutants on January 15, 2015 remained at a very low level. Since then, several pollution events were observed with high pollution levels (see yellow circle marks in Fig. 2). The concentrations of OC, EC and CO showed similar trends to PM$_{2.5}$ mass concentrations with a clear accumulation process from January 15 to 26. Based on the variations of air pollutants and transport pattern (see Table 3), the whole period was divided into five different periods with distinct features.

In the first period (P1; 08:00 16 January to 08:00 17 January), the mean concentrations of PM$_{2.5}$ and PM$_{10}$ were 82.3 μg m$^{-3}$ and 114.1 μg m$^{-3}$, respectively. There was a slow but steady increase in PM$_{2.5}$ concentration, similar variations were found for OC, EC, CO and NO$_2$. In the second period (P2; 09:00 17 January to 08:00 21 January), the mean concentrations of PM$_{2.5}$ and PM$_{10}$ were 48.6 μg m$^{-3}$ and 98.3 μg m$^{-3}$, respectively, which is relatively low. The CO concentration was also lower than that of P1. However, the O$_3$, SO$_2$ and NO$_2$ concentrations were higher than P1.

In the third period (P3; 09:00 21 January to 05:00 23 January), the mean concentrations of PM$_{2.5}$ and PM$_{10}$ were 75.7 μg m$^{-3}$ and 115.8 μg m$^{-3}$, respectively, which were 1.5 and 1.2 times as high as that during P2. An obvious haze event was observed in this period. PM, OC and EC concentrations were characterized by a dramatic increase to the highest levels and then a rapid decrease to a low level. PM$_{2.5}$ and PM$_{10}$ concentrations started to increase rapidly from 06:00 21 January reaching their maxima (i.e., 172.9 μg m$^{-3}$ and 285.0 μg m$^{-3}$) at 20:00 21 January and subsequently decreased rapidly to 49.3 μg m$^{-3}$ and 66.2 μg m$^{-3}$ at 01:00 22 January, respectively. However, this change was not found for other trace gases such as O$_3$, CO, SO$_2$ and NO$_2$. In the fourth period (P4; 06:00 23 January to 23:00 25 January), the mean concentrations of PM$_{2.5}$ and PM$_{10}$ were 86.8 μg m$^{-3}$ and 126.4 μg m$^{-3}$, respectively, which were 1.8 and 1.3 times of those during P2. In this period, two haze events were observed. All the air pollutants were characterized by two obvious increases at the same time. While in the last period (P5; 00:00 26 January to 13:00 28 January), the mean concentrations of PM$_{2.5}$ and PM$_{10}$ were 45.4 μg m$^{-3}$ and 69.4 μg m$^{-3}$, respectively. PM$_{2.5}$ and PM$_{10}$ decreased rapidly and remained low followed by the other cold air activity from north passing through Dongshan with clean air masses, resulting in a large scale of precipitation.

3.1.3. Diurnal variation of major air pollutants

The diurnal evolutions of air pollutants and carbonaceous aerosols are illustrated in Fig. 3. The concentrations of all the air pollutants and carbonaceous aerosols maintained high levels in the daytime and low levels in the nighttime, indicating the strong impact of human activities on air quality in Dongshan. O$_3$ concentrations showed most obvious diurnal variations with the lowest levels at 05:00 in the morning and the highest at 15:00 in the afternoon. As a secondary pollutant, the photochemical production of O$_3$ is closely related to solar radiation (Latif et al., 2012; Cheung and Wang, 2001). The diurnal variations of PM$_{2.5}$ and PM$_{10}$ showed the bimodal pattern with the first peak appeared at 11:00 at noon and the second peak appeared at 19:00 in the evening. A similar trend was found for NO$_2$ with the first peak appeared at 9:00 and the second peak appeared at 16:00. The diurnal variation of OC and EC also showed the bimodal pattern with the first peak appeared at 12:00 and 9:00, respectively, and the second peak both appeared at 18:00, which was associated with traffic-related emissions during rush hours. The diurnal variations of CO and SO$_2$ showed the unimodal pattern with the peak appeared at 12:00 and 11:00 at noon, respectively and the valley both appeared at 23:00 in the evening. CO and SO$_2$ are emitted directly from sources such as biomass burning, fuel and coal combustion, their concentrations can be affected significantly by the local sources (Yan et al., 2015; Luvsan et al., 2012). Lower concentrations of all the air pollutants except O$_3$ were observed in the afternoon when the planetary...
boundary layer (PBL) became deeper and wind speed increased (Zhang and Cao, 2015; Wang et al., 2015; Xu et al., 2014).

The PBL height from 15 to 28 January, 2015, at Dongshan was derived from the U.S. National Oceanic and Atmospheric Administration (NOAA) READY archived meteorological GDAS data. Anti-correlation between the PBL and PM concentrations was found during 15–28 January, 2015, in Dongshan. The correlation coefficients between the PBL height and PM$_{2.5}$, PM$_{10}$ concentrations were -0.20 and -0.24 ($P < 0.05$), respectively, indicating the low PBL height contributes to the enhanced accumulation of particulate matter formation.

3.1.4. Correlation between major air pollutants

Table 2 summarizes the correlation coefficients between major air pollutants and carbonaceous aerosols for the whole period. PM$_{2.5}$ was highest correlated with CO ($r = 0.79$), followed by SO$_2$ ($r = 0.51$) and NO$_2$ ($r = 0.51$), reflecting the common sources of these species from fossil fuel combustion. NO$_2$ are mostly from fossil fuels burning (Lamarque et al., 2010) and CO has a relatively long lifetime in the atmosphere with well-known sources such as fossil fuels or firewood burning and oxidation of hydrocarbons (Yu et al., 2006; Xu et al., 2015). OC and EC had good correlations with PM$_{2.5}$ and PM$_{10}$, which implied that OC, EC and particulate matters have similar sources and formation processes. OC and EC also had good correlations with NO$_2$, CO and SO$_2$, which provided another evidence that vehicle emission and coal combustion may be the dominant sources of OC and EC in PM$_{2.5}$ in Dongshan. Better correlation between EC and NO$_2$ was found than that between OC and NO$_2$ or between EC and SO$_2$, implying the more significant effect of traffic sources on EC emissions. However, negative correlations were found between O$_3$ and other air pollutants such as PM$_{2.5}$, PM$_{10}$, NO$_2$ and CO, which can be attributed to O$_3$ consumption during the oxidation of NO to NO$_2$ (Wang et al., 2014b). Moreover, particulate matter in the atmosphere can scatter and absorb light, affecting the visibility and solar radiation transfer, thus results in the decreased photochemical production of O$_3$ (Yang et al., 2015; Cheung and Wang, 2001).

3.2. Sources of carbonaceous aerosols

Carbonaceous aerosol originates from a variety of emission sources, the relationship between OC and EC and the ratio of OC to EC is an important factor that provides information about the source type of carbonaceous aerosols (Turpin and Huntzicker, 1995; Cao et al., 2007; Ji et al., 2016; Pio et al., 2011). A strong correlation between OC and EC was found in PM$_{2.5}$ with a correlation coefficient of 0.88, indicating that the two species maybe originated from similar emission sources and transport processes. Previous studies
have shown that high OC/EC ratios were related to biomass burning or the formation of SOC whereas low OC/EC ratios were related to fossil-fuel emissions like vehicle exhaust (Schauer et al., 2002; Zhang et al., 2007b). Watson et al. (2001) reported that the OC/EC ratios measured with TOR method for coal combustion, vehicle emission, and biomass burning were 2.7, 1.1 and 9.0, respectively. The OC/EC ratios in Dongshan ranged from 1.8 to 12.0 with a mean value of 4.2, which was comparable with the average ratio of 4.0 reported for 14 Chinese cities (Cao et al., 2007), indicating that vehicle exhaust, coal combustion, biomass burning were the possible sources of carbonaceous species in Dongshan.

The ratio of OC to EC is influenced by many factors, such as the chemical composition of the fuels, the effectiveness of pollution control devices, the sampling environment or analytical methods. Therefore, the application of OC/EC ratios to source identification requires either an assumption that the ambient OC was POC or a way to estimate the SOC.

To better understand the contribution of SOC formation, we used the EC tracer method, which is based on the ratio of OC/EC to estimate SOC. This method assumes that: (1) in contrast with non-volatile organics, the contribution of semi-volatile organic compounds’ contribution is relatively small; (2) the composition of primary carbonaceous aerosol emissions and the contribution of each origin remain constant spatially and temporally; and (3) the contribution of non-combustion POC is small or constant (Castro et al., 1999). Such a method has some limitations; for example, SOC will be overestimated when biomass burning occurred with high emission ratio of OC to EC (Pio et al., 2011). Despite of the limitation, EC-tracer method is believed to provide reasonable and semi-quantitative SOC and has still been widely used in many other studies (Chen et al., 2016; Ji et al., 2016; Liu et al., 2016). The equations are as follows:

\[\text{SOC} = \text{OC}_{\text{total}} - \text{OC}_{\text{pri}} \]

\[\text{OC}_{\text{pri}} = \text{EC} \left(\frac{\text{OC}_{\text{pri}}}{\text{EC}} \right)_{\text{OC}} + N \]

where \(\text{OC}_{\text{pri}} \) is primary organic carbon, and \(\left(\frac{\text{OC}_{\text{pri}}}{\text{EC}} \right)_{\text{OC}} \) is the ratio for primary sources contributing to the sample OC/EC ratio. N is the contribution of POC from non-combustion sources or sampling artifacts. Castro et al. (1999) reported that \(\left(\frac{\text{OC}_{\text{pri}}}{\text{EC}} \right)_{\text{OC}} \) could be represented by the observed minimum (OC/EC) ratio. Lin and Turpin (2002) improved this method by taking regression analysis on the 10–20% percentile of the lowest OC/EC ratios to get the \(\left(\frac{\text{OC}_{\text{pri}}}{\text{EC}} \right)_{\text{OC}} \). In this study, linear regression was adopted based on the lowest 10% of the measured OC/EC values, and the slope of 1.83 and intercept of 3.77 was adopted as the \(\left(\frac{\text{OC}_{\text{pri}}}{\text{EC}} \right)_{\text{OC}} \) and N.

Based on the equations, the averaged estimated SOC concentration for the whole period was 5.7 µg m\(^{-3}\), accounting for 28.4% of the total OC in Dongshan. Fig. 4 shows the SOC/OC and OC/EC ratios during different periods. The average OC/EC ratios from P1 to P5 were 4.3, 4.7, 3.9, 3.1 and 3.3, respectively. The average SOC concentrations from P1 to P5 were 4.8 µg m\(^{-3}\), 6.9 µg m\(^{-3}\), 6.3 µg m\(^{-3}\), 5.5 µg m\(^{-3}\) and 2.6 µg m\(^{-3}\), accounting for 29.3%, 32.7%, 29.6%, 22.0% and 9.1% of the total OC, respectively, indicating that SOC formation can be an important component of OC mass in Dongshan. It should be noted that high OC/EC and SOC formation were found during P1, P2 and P3 which might be associated with the long-range and regional air mass transport, which was favorable for OC aging and thus caused high SOC formation. Low OC/EC ratio and SOC formation were found during P4, indicating local emissions during P4, as discussed in the following sections of air mass trajectories clustering and PSCF and CWT analysis. The very low SOC level during P5 might be more affected by the unfavorable meteorological conditions with rain and snow.

3.3 Air mass trajectories clustering

As mentioned above, PM\(_{2.5}\) was the main air pollutant in Dongshan. In this work, trajectory clustering approach was applied to identify different transport patterns of PM\(_{2.5}\) for different periods at
Dongshan (Fig. 5). As shown in Fig. 5(a), four clusters for all data during the whole period were calculated: NE (Northeast), N (North), NW (Northwest) and SW (Southwest). The back trajectories for P1 to P5 are shown in Fig. 5(b), (c), (d), (e) and (f), respectively. The percentages of trajectories for each cluster as well as mean PM$_{2.5}$ concentrations and wind speeds during each period (i.e., P1 to P5) are summarized in Table 3. In addition, the transport pattern and the results for polluted cases when PM$_{2.5}$ concentrations exceeding 75 μg m$^{-3}$ (the Class II NAAQS) are also presented in Table 3. For the whole period, the NW cluster was the dominant direction with percentages of 29.5% in total air mass trajectories and the SW, N and NE clusters accounted for 27.7%, 25.9% and 17.0%, respectively.
Table 3
Mean concentrations of PM$_{2.5}$ and percentages of trajectories during the whole period (15–28 January) and during different periods, i.e., P1 (from January 16 08:00 to January 17 08:00), P2 (from January 17 09:00 to January 21 08:00), P3 (from January 21 09:00 to January 23 05:00), P4 (from January 23 06:00 to January 25 23:00), P5 (from January 26 00:00 to January 28 13:00).

<table>
<thead>
<tr>
<th>Transport pattern</th>
<th>Direction</th>
<th>Percent (%)</th>
<th>Mean PM$_{2.5}$ (μg m$^{-3}$)</th>
<th>Polluted Mean PM$_{2.5}$ (μg m$^{-3}$)</th>
<th>Polluted Percent (%)</th>
<th>Wind Speed (m s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All data for the whole period</td>
<td>N</td>
<td>25.9 (29)</td>
<td>70.6</td>
<td>94.8</td>
<td>48.3 (14)</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>27.7 (31)</td>
<td>71.0</td>
<td>112.7</td>
<td>32.2 (10)</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>29.5 (33)</td>
<td>57.6</td>
<td>87.6</td>
<td>21.2 (7)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NE</td>
<td>17.0 (14)</td>
<td>27.3</td>
<td>0.0</td>
<td>0.0 (0)</td>
<td>2.6</td>
</tr>
<tr>
<td>P1 (16/Jan-17/Jan)</td>
<td>Regional transport</td>
<td>NW</td>
<td>55.6 (5)</td>
<td>61.0</td>
<td>85.3</td>
<td>20.0 (1)</td>
</tr>
<tr>
<td></td>
<td>Long-range transport and regional transport</td>
<td>N</td>
<td>44.4 (4)</td>
<td>108.8</td>
<td>108.8</td>
<td>100.0 (4)</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>59.4 (19)</td>
<td>47.5</td>
<td>0.0</td>
<td>0.0 (0)</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>NW</td>
<td>40.6 (13)</td>
<td>56.3</td>
<td>84.7</td>
<td>15.4 (2)</td>
<td>2.7</td>
</tr>
<tr>
<td>P2 (18/Jan-20/Jan)</td>
<td>Long-range transport</td>
<td>NW</td>
<td>26.7 (4)</td>
<td>68.3</td>
<td>82.3</td>
<td>50.0 (2)</td>
</tr>
<tr>
<td></td>
<td>Regional transport and local sources</td>
<td>N</td>
<td>73.3 (11)</td>
<td>78.4</td>
<td>89.0</td>
<td>63.6 (7)</td>
</tr>
<tr>
<td></td>
<td>SW</td>
<td>100.0 (22)</td>
<td>86.8</td>
<td>111.1</td>
<td>54.5 (12)</td>
<td>2.4</td>
</tr>
<tr>
<td>P3 (21/Jan-22/Jan)</td>
<td>Long-range transport</td>
<td>NE</td>
<td>66.7 (14)</td>
<td>35.4</td>
<td>99.9</td>
<td>7.1 (1)</td>
</tr>
<tr>
<td></td>
<td>Regional transport and local sources</td>
<td>NW</td>
<td>33.3 (7)</td>
<td>65.6</td>
<td>77.8</td>
<td>28.3 (2)</td>
</tr>
</tbody>
</table>

The “Polluted Mean PM$_{2.5}$” represents the mean PM$_{2.5}$ concentrations exceeding 75 μg m$^{-3}$ (the Class II NAAQS). The “polluted Percent” is calculated on the basis of number of trajectories with PM$_{2.5}$ concentration exceeding 75 μg m$^{-3}$ divided by the total number of trajectories from each direction. Values in the parentheses are the number of back trajectories.

For P1, regional transport was the main transport pattern. The cluster NW accounted for 55.6% of total air masses trajectories with relatively low PM$_{2.5}$ concentration (i.e., 61.0 μg m$^{-3}$). The cluster N accounted for 44.4% air masses related to high PM$_{2.5}$ concentration of 108 μg m$^{-3}$ from Shandong, Jiangsu and the south of Hebei provinces. For P2, Long-range transport was the main transport pattern. The cluster NW accounted for 59.4% air masses which originated from far away Mongolia across Inner Mongolia (China) before reaching at Dongshan and brought relatively clean air with low mean PM$_{2.5}$ concentration of 47.5 μg m$^{-3}$. The cluster SW accounted for 40.6% also brought relatively clean air from Tibet and Yunnan provinces in the west. It should be noted that 15.4% of trajectories from SW brought polluted air masses with polluted mean PM$_{2.5}$ concentration of 84.7 μg m$^{-3}$ slightly exceeding the NAAQS, which was associated with regional transport. For P3, the long-range predominant cluster N accounted for 73.3% air masses originating from Tianjin municipality across Bohai Bay, Shandong and Jiangsu provinces with a mean PM$_{2.5}$ concentration of 78.4 μg m$^{-3}$. The cluster NW accounted for 26.7% of total air masses trajectories with relatively low PM$_{2.5}$ concentration (i.e., 68.3 μg m$^{-3}$). Due to the aerosol aging in the long-range air mass transport process, the transport patterns during P2 and P3 provided the explanations for the high SOC concentrations during as discussed before. For P4, all trajectories came from the SW cluster and brought high polluted air masses with a mean PM$_{2.5}$ concentration of 86.8 μg m$^{-3}$ from Jiangxi and Hunan provinces as well as local emissions. For P5, the dominant transport pattern was long-range transport similar with P2. The cluster NE accounted for 66.7% air masses with the lowest mean PM$_{2.5}$ concentration of 35.4 μg m$^{-3}$, originating from the northeast of China across the Yellow Sea and the East Sea before reaching at Dongshan and brought clean air masses and water vapor from the ocean. The cluster NW accounted for 33.3% and also brought clean air from Tibet and Sichuan provinces to Dongshan.

3.4. PSCF and CWT analysis

Maps were created with PSCF and CWT results to specify the level of PSCF and CWT values in terms of a color bar (Fig. 6). Since the air pollution level remained low during P5 as discussed in previous section 3.3, the PSCF and CWT results for P5 are not considered in this section. The areas with high PSCF values were considered as the potential source areas. The areas with high CWT values were considered to make high potential contributions to the high concentrations at the receptor site. As shown in Fig. 6, there were obvious differences in potential source areas for PM$_{2.5}$ during different period.

For P1 (see Fig. 6(a) and (b)), PSCF and CWT showed the similar results. There were two obvious source areas affecting high PM$_{2.5}$ concentrations at Dongshan. One was mainly located in the northwest of Dongshan such as Xingtai and Handan in Hebei province, Liaocheng in Shandong province, Fuyang and Luoyang in Henan province. The other potential area was mainly located in the north nearby within 100 km including high-populated cities such as Suzhou, Wuxi and Changzhou in Jiangsu province corresponding to local emissions. The mean wind speed when the trajectories were mainly from north during P1 was 1.6 m s$^{-1}$ (see Table 1), which was lowest during the whole period.

For P2 (see Fig. 6(c) and (d)), PSCF results showed that the potential source areas were mainly located in the west of Dongshan such as Xinyang in the south of Henan province, Fuyang, Hefei, Chizhou in Anhui provinces, Xianning in Hubei province and Nanchang in Jiangxi province. CWT results showed that Fuyang, Liu’an, Ma’anshan in Anhui province may have a great contribution to Dongshan’s high PM$_{2.5}$ concentrations. For P3 (see Fig. 6(e) and (f)), the distributions of PSCF and CWT values showed a major source region from Tianjin municipality across Bohai Bay, Shandong and Jiangsu province due to long-range transport, which brought highly polluted air masses to Dongshan with the highest mean wind speed during the whole period of 4.1 m s$^{-1}$ (see Table 1). The sources affecting high PM$_{2.5}$ concentrations at Dongshan were mainly located in Tianjin municipality, Dongying, Rizhao and Linyi in Shandong province, Xuzhou, Suqian, Hua’ian, Yangzhou, Changzhou, Wuxi and Suzhou in Jiangsu province.

For P4 (see Fig. 6(g) and (h)), the PSCF results showed that the potential sources affecting high PM$_{2.5}$ concentrations were mainly located in the southwest region of Dongshan. According to the CWT results, strong local source emissions were found during this period. Local sources areas in the southwest nearby within 100 km including high-populated cities such as Wuxi in Jiangsu province, Xuzhou in Zhejiang province, Huai’an, Yangzhou, Changzhou, Wuxi and Suzhou in Jiangsu province corresponded to local emissions.
Fig. 6. The PSCF and CWT maps for PM$_{2.5}$ for (a) and (b) P1 from January 16 08:00 to January 17 08:00; (c) and (d) P2 from January 17 09:00 to January 21 08:00; (e) and (f) P3 from January 21 09:00 to January 23 05:00; (g) and (h) P4 from January 23 06:00 to January 25 23:00.
Ma’anshan in Anhui province, Hengyang in Hunan province and Xinyu in Jiangxi province also had a great contribution to Dongshan’s high PM$_{2.5}$ concentrations. It is of interest to note that during this period, large numbers of fire pots were monitored in the areas such as Jiangxi, Hunan, Guangdong and Fujian provinces (see Fig. 7). The back trajectories analysis showed that the air masses during this period passed through these areas, indicating a strong impact of biomass burning emissions on the PM$_{2.5}$ concentrations and the other air pollutants. Further chemical and carbon isotope analysis are needed to verify it (Cao et al., 2015).

In this study, it was found that PM$_{2.5}$ concentrations in Dongshan under different wind speed conditions have shown different source features. Under high wind speed conditions, strong long-range transport was found (i.e., P3), while under low wind speed conditions strong local emissions were found (i.e., P1 and P4). Both of the two conditions could lead to high PM$_{2.5}$ concentrations.

4. Conclusions

In this study, the characteristics and geographical origins of the major air pollutants (PM$_{2.5}$, PM$_{10}$, CO, SO$_2$, NO$_2$ and O$_3$) and carbonaceous aerosols were analyzed during 15–28 January, 2015, at Dongshan, a rural site in the Yangtze River Delta of China. PM$_{2.5}$ on average contributed 63% to PM$_{10}$ for the whole period, indicating the significant fine particulate matter pollution in Dongshan. TC accounted for 16.5% of PM$_{2.5}$ mass. SOC accounted for nearly one third of OC on average, highlighting the significance of SOC formation in wintertime haze pollution. Based on the variations of air pollutants, we separated the whole period into five sub-periods: P1 (08:00 16 January to 08:00 17 January), P2 (09:00 17 January to 08:00 21 January), P3 (09:00 21 January to 05:00 23 January), P4 (06:00 23 January to 23:00 25 January) and P5 (00:00 26 January to 13:00 28 January). The mean PM$_{2.5}$ concentrations for P1 to P5 were 82.3 µg m$^{-3}$, 48.6 µg m$^{-3}$, 75.7 µg m$^{-3}$, 86.8 µg m$^{-3}$ and 45.4 µg m$^{-3}$, respectively. The NOAA HYPLIT model and the PSCF and CWT analysis showed that different pollution periods had distinct different transport patterns. Lower PM$_{2.5}$ concentrations during clean periods of P2 and P5 were associated with long-range transported air masses originated from remote regions such as Mongolia, Inner Mongolia and oceanic areas (i.e., the Yellow Sea and the East Sea). During haze periods, regional transport during P1 and P3 and strong local emissions during P4 both made great contributions to high PM$_{2.5}$ concentrations in Dongshan. Significant air masses transport from industrial cities in the north of Dongshan such as Hengshui, Xingtai, Handan in Hebei province, Liao Cheng, Linyi, Dongying in Shandong province, Luoyang in Henan province to Dongshan were found. In addition, polluted air masses from high-populated cities in the nearby provinces such as Suzhou, Wuxi, Changzhou in Jiangsu province, Hangzhou, Huzhou in Zhejiang province, Hefei in Anhui province and Nanchang in Jiangxi province also made a great contribution to the extreme haze episodes in Dongshan. Biomass burning in the southwest of Dongshan such as Jiangxi, Hunan, Guangdong and Fujian might have also significantly decreased air quality in Dongshan, which was supported by MODIS fire spots and receptor models. It should be noted that strong SOC formation was found under long-range transport pattern, which was favorable for aerosol aging whereas low SOC formation was found when there was strong local emission. PM$_{2.5}$ concentrations in Dongshan under different wind speed conditions showed different source features. In addition to local emissions, high PM$_{2.5}$ concentrations at Dongshan were affected by either regional or long-range transport, which were characterized by relatively low and high wind speeds, respectively. The correlation analysis among the air pollutants and carbonaceous aerosols revealed the importance of fossil fuel combustion and vehicle emission in Dongshan. To improve the air quality in Dongshan, it is necessary to implement the source emissions control strategies for all the industrial areas locally and regionally, especially the industrial provinces such as Shandong and Hebei provinces and the YRD. It is worth noting that our study did not provide quantitative analysis on the emission sources of air pollutants, further chemical and physical analysis, for instance, Positive Matrix Factorization (PMF), a source-receptor model analysis are needed to identify more detailed emission source information (Bari and Kindzierski, 2017, Begum and Hopke, 2013; Sahu et al., 2011).

Acknowledgments

We acknowledge the financial support by the Natural Science Foundation for Young Scientists of Jiangsu Province, China (BK201508895), and the National Natural Science Foundation of China (41603104 and 91644103), and the Startup Foundation for Introducing Talent of NUIST (No. 2015r023 and 2015r019).

References

Bari, M.A., Kindzierski, W.B., 2017. Characteristics of air quality and sources affecting fine particulate matter (PM$_{2.5}$) levels in the City of Red Deer, Canada. Environ. Pollut. 221, 367–376.

