Deuterium-excess of water vapor

Lisa Welp¹, Xuhui Lee^{2,5}, Timothy Griffis³, Xue-Fa Wen⁴, Wei Xiao⁵, Shengong Li⁴, Xiaomin Sun⁴, Zhongmin Hu⁴, and Maria Val Martin⁶

 ¹Scripps Institution of Oceanography, UC San Diego (<u>lwelp@ucsd.edu</u>), ²Yale University, ³University of Minnesota Twin Cities, ⁴Chinese Academy of Sciences,
⁵Nanjing University of Information Science and Technology, ⁶Colorado State University

Isotopes in partitioning ET

$d-ex = \delta D - 8^* \delta^{18} O$

Vapor *d-ex* is set by the moisture source region and modified by...

- 1. Rainout processes: do not alter *d-ex* much.
- 2. Soil evaporation: high *d-ex* that depends on relative humidity. Lower humidity = higher *d-ex*.
- Plant transpiration: *d-ex* values on average near the plant source water, but they vary over the diurnal cycle.

Research objectives

- It's possible that *d-ex* could provide additional information useful in partitioning ET at either the local or regional scales.
- 1. Characterize *d*-ex variability in the surface 'background' atmosphere.
- 2. Qualitatively identify local ET influence on vapor *d-ex*.
- How do these vary from place to place?

Station locations

Borden Forest

Rosemount corn

New Haven

Duolun grassland

Luancheng cropland

Image IBCAO Image © 2011 TerraMetrics Image © 2011 DigitalGlobe Data SIO, NOAA, U.S. Navy, NGA, GEBCO Data SIO, NOAA, U.S. Navy, NGA, GEBCO Image © 2011 TerraMetrics Image IBCAO Image © 2011 GeoEye

Beijing

...Googl

Daily mid-day *d-ex* and local relative humidity

Daily midday *d-ex* and planetary boundary layer height

Great Lakes influence North American vapor *d-ex*

- Gat et al. (1994) used high *d-ex* in precipitation from the Northeastern US to estimate that evaporation from the Great Lakes contribute to 4-16% of precipitation downwind in the summer.
- Our measurements show evidence in the vapor phase as well. Same % contribution to the vapor phase?
- Additional isotope measurements from a 200 m tall tower in Minnesota also support this interpretation (Schulze et al., submitted).

Diurnal *d*-ex peaks in daytime

Mid-day *d*-ex increase can be a combination of...

- 1. Evaporation from local soils: increase *d-ex*
- 2. Plant transpiration: diurnal cycle in *d-ex*
- 3. Vertical mixing with the background atmosphere: gradient in *d-ex* increasing with height in North America, increase in *d-ex*

Mid-day *d-ex* variability is not a simple 2-endmember mixing problem.

Transpiration modeled diurnal cycle

SiLSM described by Xiao et al. (2010) JGR.

Diurnal *d-ex* at crop and grass sites show influence of transpiration

Conclusions

- Evaporation from the Great Lakes likely contributes significantly to atmospheric vapor in Northeastern North America and influences regional vapor *d-ex*.
- Data and modeling results provide some indications that transpiration contributes to changes in *d-ex* and must be accounted for at least on the diurnal time scales in partitioning attempts.
- 3. More sophisticated modeling is needed to determine the feasibility of using *d-ex* to partition ET, but there seem to be some measurable signals to work with.
- 4. This set of measurements provides a good overview of key regional and local influences.

Acknowledgments

- Measurements supported by:
 - US National Science Foundation
 - University of Minnesota
 - National Natural Science Foundation of China
 - and others...
- BASIN travel support to the Keystone meeting