

A WRF-Chem modeling study of a PM_{2.5} episode over Yangtze River Delta region

Presented by Cui Jian 10/18/2013

Outline

- Introduction
- Objectives
- Method and Data
- Preliminary results
- Summary and future work

Introduction

• PM_{2.5}:

✓ Solid particles or liquid droplets with diameter less than or equal to 2.5 micrometers in size.(Raes et al.,2000)

Source:

- ✓ Industrial, biomass combustion, wind-blown (mineral dust), and natural.
- Components:
- ✓ Elemental carbon, organic carbon, sulfate, nitrate, and so on.

Introduction(con.)

- Impact on climate changes:
- ✓ Direct radiative forcing: scattering of solar radiation and absorption/emission of terrestrial radiation.
- ✓ Indirect radiative forcing: effects of aerosols on cloud properties.
- Impact on human health:
- ✓ One of major air pollutants.

Motivation and objectives

Motivation

- PM_{2.5} is becoming more and more serious in YRD; the transparency of atmosphere is getting worse; there is long-standing aerosol cloud.
- Modeling PM_{2.5} and other species is challenged because an accurate and comprehensive emission inventory is lacking.

Objectives:

To set up WRF/Chem simulation for better understanding of PM_{2.5} episodes' mechanism in Yangtze River Delta Region.

Method and Data

Brief description of WRF-Chem

Configurations of the simulation

The emission of David Street

WRF-Chem model

Chemical mechanisms

- Four choices for gas-phase chemical mechanisms: RADM2, RACM, CB-4 and CBM-Z
- Three choices for photolysis schemes:Madronich, Fast-J,F-TUV
- Four choices for aerosol schemes: MADE/SORGAM,MADE/VBS,MOSAIC and GOCART
- Three scheme match: RADM2&MADE/SORGAM, RACM & MADE/SORGAM and CBMZ & MOSAIC
- I used CBM-Z and MOSAIC

(From WRF-Chem Version 3.4 User's Guide)

Chemical Modules

- emissions_driver
- optical_driver
- photolysis_driver
- dry_dep_driver
- grelldrvet
- mechanism_driver
- cloudchem_driver
- aerosols_driver
- wetscav_driver
- sum_pm_driver

Steps to run WRF-Chem

Model configurations

d1:36km

d2:12km

d3:4km

Vertical levels:40

Simulated time:

20120508-20120509

The emission of David Street

 A new inventory of air pollutant emissions in Asia in the year 2006 is developed to support the Intercontinental Chemical Transport Experiment-Phase B (INTEXB) funded by the NASA.(D.G. Streets et al.2003)

Definition of the inventory domain

Source: D.G. Streets et al.2003

Summary of the INTEX-B Asia emission inventory dataset

Item	Description
Domain Species VOC speciation Sectors Representing Year Spatial resolution	22 countries and regions in Asia, see Fig. 1 SO ₂ , NO _x , CO, NMVOC, PM ₁₀ , PM _{2.5} , BC, OC by mechanism: CB04, CB05, RADM2, SAPRC99, SAPRC07 power plants, industry, residential, transportation 2006 30 min×30 min
Seasonality Data availability	monthly available online at http://mic.greenresource.cn/intex-b2006 http://www.cgrer.uiowa.edu/EMISSION_DATA_new/index_16.html

(Source: D.G. Streets et al.2003)

Emission of PM_{2.5}I

Emission of PM_{2.5}J

Emission of NO_X

Preliminary results

Spatial patterns

Comparison with observation

Simulated PM_{2.5} of Domain 1

120

120 140

Simulated PM_{2.5} of domain 2

2012-05-08_18:00:00

90 100 110

25 50 75 100 125 150 175 200 225 250 275 300 325 350 375

2012-05-08 12:00:00

2012-05-09_00:00:00

Simulated PM_{2.5} of Domain 3

30°N

117°E

118°E

119°E

29°30'N

8.65 121°E

120°E

Comparison of simulated PM_{2.5} with observed in SuZhou

Comparison of simulated NOx with observed in SuZhou

Comparison of simulated SO₂ with observed in SuZhou

Comparison of simulated O₃ with observed in SuZhou

Comparison of four simulated matters

Summary

- WRF-Chem has been set up to simulate particulate matter and other species over the Yangtze River Delta region. A 24-hour simulation was completed.
- The results show that the PM_{2.5} was significantly overestimated by our simulations, especially for time after 12:00 (possible causes need to be investigated)

Future Work

 To investigate the reasons causing the over-predictions such as emission issue, initial/boundary conditions for chemical species.

To improve our simulations by including other emission sources

Thank you!