

Yale-NUIST Center on Atmospheric Environment

A discussion on modeling studies on CO₂ in urban environments

Reporter: Cui Jian 04-12-2013

Yale-NUIST Center on Atmospheric Environment

Outline

➢Background

- \triangleright Review of modeling studies on CO₂
 - Global scale
 - Regional scale
 - Urban scale

≻My work plan

Background

- Carbon dioxide (CO₂), the most important greenhouse gas, is critical to climate change.
- Globally, CO₂ increased from 345 ppm in 1985 to 390 in 2011, and is expected to continue to increase (WMO GHG bulletin 2011).
- ➤ In China, with the rapid urbanization and economic growth, anthropogenic emissions of CO₂ in China increased by 2 to 4 times over the past several decades.
- > It is important to investigate impact of human activities on the changes in CO_2 in urban environment.

Sources and sinks of CO₂

Carbon dioxide sources

- Human-caused sources
 Fossil Fuel
 Burning
 Cement Production
- Natural sources
 Land-use Change
 Carbon dioxide sinks
- Land-Based Sink
- Oceanic Sink

(Source:IPCC2007)

Changes of CO_2 emissions in China during 1990-2008

(Source: National Bureau of Comprehensive Statistics Division, 2010)

Modeling Studies on CO₂

≻Global models

-TM3

TM3 is a global atmospheric tracer transport model with a spatial resolution of approximately 4×5 , 19 vertical levels. The model is driven by meteorological fields which from the NCEP reanalysis database.(Kalnay et al., 1996).

- Carbon Tracker

Carbon Tracker is a global assimilation system developed by NOAA ESRL. (Wouter Peters et al.,2007)

These global models provide lateral boundary and initial conditions to regional models

> Regional models

- WRF-GHG or WRF-VPRM

The WRF Greenhouse Gas model (WRF-GHG) is an augmentation of the coupled Weather Research and Forecasting model (WRF) to the Vegetation Photosynthesis and Respiration model (VPRM). (Veronika Beck1 et al.,)

> WRF-GHG online calculated fluxes

-Biospheric CO₂-the VPRM model is a diagnostic model that calculates hourly Net Ecosystem Exchange (NEE).

-Termite CO_2 flux: use the database for termite emissions of Sanderson(1996).

WRF-GHG external flux data sets

-Biomass burning emissions for CO₂ :calculated as daily emissions based on satellite fire spots by a WRF-Chem preprocessor (Pre_chem_sources) developed by Karla Longo and Saulo Freitas.

-Authropogenic emissions for CO₂: data from EDGAR and IER

WRF-GHG

VPRM Model

Applications of WRF/GHG to CO₂ modeling

R.Ahmadov et al.(2009)used WRF-VPRM to compare with two global models . They found that WRF-VPRM can capture the measured CO₂ signal much better than the global models due to the coarse resolution.

D.Pillai et al.(2011)used WRF-VPRM to investigate the ability of high-resolution modeling tools to simulate meteorological and CO₂ fields. The results suggest that the high-resolution models can capture diurnal, seasonal and synoptic variability of observed mixing ratios much better than coarse global models.

CO₂ concentration time series comparison (Source:R.Ahmadov et al.2009)

Comparison of measured and modeled CO₂ concentrations

(Source: D.Pillai et al, 2011)

Comparison of measured CO₂ concentration against the models for daytime and nighttime

(Source: R.Ahmadov et al.2009)

Modeling studies of CO_2 on urban scale

- Most current existing research works of CO₂ are related to observational studies. Regional modeling studies of CO₂ are very limited.
- Our study will use WRF-GHG to simulate CO₂ on urban scale.
- The possible difficulties and challenges for modeling CO₂ at fine resolution
 - Fine resolution anthropogenic emission inventory.

- Well-designed CO_2 monitoring network to provide observational data for model performance evaluation.

My work plan

- > Our study will focus on urban scale (Nanjing).
- > To simulate diurnal and spatial patterns of CO_2 on regional scale.
- ➤ To estimate the urban scale flux and evaluated quantitatively of contributions to CO₂ concentration variation from anthropogenic emissions and natural source and sink.
- Try to predict the future urbanization development impact on greenhouse gases variation ,and try to provide a scientific basis for GHGs emission reduction.

